Class : XIIth
Solutions
Subject : PHYSICS
DPP No. : 8

## Topic :-WAVE OPTICS

1
(b)

Fringe shift is given by $x=\frac{(\mu-1) t \beta}{\lambda}$
For first plate, $x=\frac{\left(\mu_{1}-1\right) t \beta}{\lambda}$
For second plate $\frac{3}{2} x=\frac{\left(\mu_{2}-1\right) t \beta}{\lambda}$
$\Rightarrow\left(\frac{\mu_{2}-1}{\mu_{1}-1}\right)=\frac{3}{2} \Rightarrow\left(\frac{\mu_{2}-1}{1.5-1}\right)=\frac{3}{2}$
$\Rightarrow \mu_{2}=1.75$
2
(d)
$y_{1}=a \sin \omega t, y_{2}=a \cos \omega t=a \sin \left(\omega t+\frac{\pi}{2}\right)$
3
(d)

$$
\begin{aligned}
& \phi=\frac{\lambda}{6}=\frac{360^{\circ}}{6}=60^{\circ} \\
& I=I_{0} \cos ^{2} \theta \\
&=I_{0} \cos ^{2} 60^{\circ} \\
&=\frac{3}{4} \times I_{0} \\
& \frac{I}{I_{0}}=\frac{3}{4}
\end{aligned}
$$

5
(d)

Let $n$th minima of 400 nm coincides with mth minima of 560 nm , then
$(2 n-1)\left(\frac{400}{2}\right)=(2 m-1)\left(\frac{560}{2}\right)$
Or $\frac{2 n-1}{2 m-1}=\frac{7}{2}=\frac{14}{10}=\ldots$
ie. $4^{\text {th }}$ minima of 400 nm coincides with $3^{\text {rd }}$ minima of 560 nm .
Location of this minima is,
$Y_{1}=\frac{(2 \times 4-1)(1000)\left(400 \times 10^{-6}\right)}{2 \times 0.4}=14 \mathrm{~mm}$
Next $11^{\text {th }}$ minima of 400 nm will coincide with $8^{\text {th }}$ minima of 560 nm . Location of this minima is ,
$Y_{2}=\frac{(2 \times 11-1)(1000)\left(400 \times 10^{-6}\right)}{2 \times 0.1}=42 \mathrm{~mm}$
$\therefore$ Required distance $=Y_{2}-Y_{1}=28 \mathrm{~mm}$
(a)

Amplitude $A_{1}$ and $A_{2}$ are added as vector. Angle between these vectors is the phase difference $\left(\beta_{1}-\beta_{2}\right)$ between them
$\therefore \quad R=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \left(\beta_{1}-\beta_{2}\right)}$
(c)

The interference fringes for two slits are hyperbolic
(d)

Momentum transferred in one second
$p=\frac{2 U}{c}=\frac{2 S_{a v} A}{c}=\frac{2 \times 6 \times 40 \times 10^{-4}}{3 \times 10^{8}}$
$=1.6 \times 10^{-10} \mathrm{~kg}-\mathrm{m} / \mathrm{s}^{2}$
(d)

Diffraction shows the wave nature of light and photoelectric effect shows particle nature of light
(d)

Phase difference, $\phi=\frac{2 \pi}{\lambda} \times$ path difference
$\phi=\frac{2 \pi}{\lambda} \times \frac{\lambda}{6}=\frac{\pi}{3}=60^{\circ}$
Intensity, $\quad I=I_{0} \cos ^{2}\left(\frac{\phi}{2}\right)$
$\frac{I}{I_{0}}=\cos ^{2}\left(30^{\circ}\right)=\left(\frac{\sqrt{3}}{2}\right)^{2}=0.75$
(a)

At any point along the path 1, path difference between the waves is 0
Hence maxima is obtained all along the path 1
At any point along the path 2 , path difference is $1.5 \lambda$ which is odd multiple of $\frac{\lambda}{2}$, so minima is obtained all along the path 2
(c)

Let $a_{1}$ and $a_{2}$ be amplitudes of the two waves.
For maximum intensity

$$
I_{\max }=\left(a_{1}+a_{2}\right)^{2}
$$

For minimum intensity

$$
I_{\min }=\left(a_{1}-a_{2}\right)^{2}
$$

Given, $\frac{I_{\text {max }}}{I_{\text {min }}}=\frac{25}{1}=\frac{\left(a_{1}+a_{2}\right)^{2}}{\left(a_{1}-a_{2}\right)^{2}}$
$\Rightarrow \frac{a_{1}+a_{2}}{a_{1}-a_{2}}=\frac{5}{1}$
$\Rightarrow \quad \frac{a_{1}}{a_{2}}=\frac{3}{2}$
(law of componendo and dividendo)
Also, Intensity $\propto(\text { amplitude })^{2}$

$$
\therefore \frac{I_{1}}{I_{2}}=\left(\frac{a_{1}}{a_{2}}\right)^{2}=\frac{9}{4}
$$

20
(a)

Total phase difference
$=$ Initial phase difference + Phase difference due to path
$=66^{\circ}+\frac{360^{\circ}}{\lambda} \times \Delta x=66^{\circ}+\frac{360^{\circ}}{\lambda} \times \frac{\lambda}{4}=66^{\circ}+90=156^{\circ}$
(a)

Photoelectric effect verifies particle nature of light. Reflection and refraction verify both particle nature and wave nature of light
(a)

The speed of light $C=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=\frac{1}{\sqrt{2 \times 8}}=\frac{1}{4}=0.25$
(c)

Path difference, $x=\left(S S_{1}+S_{1} O\right)-\left(S S_{2}+S_{2} O\right)$
If $x=n \lambda$, the central fringe at 0 will be bright. If $x=(2 n-1) \lambda / 2$, the central fringe at 0 will be dark.
(c)

Critical angle, $C=\sin ^{-1}(0.6)$

$$
\begin{gathered}
\sin (C)=0.6 \\
\mu=\frac{1}{\sin C}=\frac{1}{0.6}
\end{gathered}
$$

Polarizing angle $i_{p}=\tan ^{-1}(\mu)=\tan ^{-1}\left(\frac{1}{0.6}\right)$
$=\tan ^{-1}(1.6667)$

| ANSWER-KEY |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |  |
| A. | B | D | D | D | D | A | C | D | D | D |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |  |  |
| A. | A | B | C | C | A | A | C | A | C | C |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

