Class : XIIth Date :

(b)

(d)

(a)

Solutions

DATLY PRACTICE PROBLEMS

Subject : PHYSICS DPP No. : 7

Topic :- WAVE OPTICS

1 (a)

The number of fringes shifting is decided by the extra path difference produced by introducing the glass plate. The extra path difference is $(\mu - 1)t = n\lambda$ Or $(1.5 - 1) \times 0.1 \times 10^{-3} = n \times 500 \times 10^{-9}$ $\Rightarrow n = 100$

2

The rings observed in reflected light are exactly complementary to those seen in transmitted light. Corresponding to every dark ring in reflected light there is a bright ring in transmitted light. The ray reflected at the upper surface of the air-film suffers no phase change while the ray reflected internally at the lower surface suffers a phase change of π .

3

 $\lambda = 600 \text{ nm} = 6 \times 10^{-7} \text{m}$

 $a = 1 \text{ mm} = 10^{-3} \text{m}, D = 2 \text{ m}$

Distance between the first dark fringes on either side of central bright fringe=width of central maximum

$$= \frac{2\lambda D}{a} = \frac{2 \times 6 \times 10^{-7} \times 2}{10^{-3}}$$

$$= 24 \times 10^{-4} \text{m} = 2.4 \text{ mm}$$

$$u_v = 1$$
 and $\mu_a = 1.003$

$$\therefore \quad \frac{\lambda_v}{\lambda_a} = \frac{\mu_a}{\mu_v} = 1.0003$$
$$x = \lambda_v n = \lambda_a (n+1)$$

$$\frac{n+1}{n} = \frac{\lambda_v}{\lambda_a} = 1.0003$$

$$1 + \frac{1}{n} = 1.0003, \frac{1}{n} = 0.0003$$

$$n = \frac{1}{0.0003} = \frac{10^4}{3}$$

$$\therefore x = \lambda_a n = 6000 \times 10^{-7} \text{mm} \times \frac{10^4}{3} = 2 \text{ mm}$$

Limit of resolution of the telescope

$$a = \frac{1.22\lambda}{a} = \frac{d}{x}$$

Or $d = \frac{1.22\lambda x}{a}$

(c)

(d)

(b)

(b)

$$=\frac{1.22\times5\times10^{-7}\times8\times10^{16}}{0.25}=1.95\times10^{11}$$
m

6

$$v = \frac{c}{\sqrt{\mu_r \varepsilon_r}} = \frac{3 \times 10^8}{\sqrt{1.3 \times 2.14}} = 1.8 \times 10^8 m/s$$

Fringe width $(\beta) \propto \frac{1}{\text{prism Angle }(\alpha)}$

8 (a)

Angular spread on either side is $\theta = \frac{\lambda}{a} = \frac{1}{5}$ rad

9 (a)

Photoelectric effect explain the quantum nature of light while interference, diffraction and polarization explain the wave nature of light

$$\beta = \frac{\lambda D}{d} = \frac{6000 \times 10^{-10} \times 2}{4 \times 10^{-3}}$$

 $= 0.3 \times 10^{-3} \text{m} = 0.3 \text{mm}$

12 **(a)**

If maximum electron density of the ionosphere is N_{max} per m^3 then the critical frequency f_c is given by $f_c = 9(N_{\text{max}})^{1/2}$ $\Rightarrow 10 \times 10^6 = 9(N)^{1/2} \Rightarrow N = 1.2 \times 10^{12} m^{-3}$ (d)

13

Phase difference $=\frac{2\pi}{\lambda} \times$ path difference

ie,
$$\phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{6} = \frac{\pi}{3}$$

As, $I = I_{\text{max}} \cos^2\left(\frac{\phi}{2}\right)$
Or $\frac{I}{I_{\text{max}}} = \cos^2\left(\frac{\phi}{2}\right)$
Or $\frac{I}{I_0} = \cos^2\left(\frac{\pi}{6}\right) = \frac{3}{4}$

14

(c)

(d)

Two coherent source must have a constant phase difference otherwise they can not produce interference

15

$$\beta = \frac{\lambda D}{d} = \frac{600 \times 10^{-9} \times 2}{1 \times 10^{-3}} = 12 \times 10^{-4} \,\mathrm{m}$$

So, distance between the first dark fringes on either side of the central bright fringe

$$X = 2\beta$$

= 2 × 12 × 10⁻⁴ m
= 24 × 10⁻⁴ m = 2.4 mm
(a)

As the two bright fring<mark>es coi</mark>ncide

$$\therefore n\lambda_1 = (n+1)\lambda_2$$

$$\frac{n+1}{n} = \frac{\lambda_1}{\lambda_2} = \frac{7500}{6000} = \frac{5}{4}$$

$$1 + \frac{1}{n} = \frac{5}{4}$$
, $n = 4$

17

(a)

(d)

When spherical waves are incident on a plane refracting surface, separating two media, the reflected waves have spherical wave fronts

18

Refractive index of a medium

 $n = \tan i_p$

Where i_p = Brewster's angle

$$\Rightarrow i_p = \tan^{-1}[n]$$

19 (a) $\beta \propto \lambda, \therefore \lambda_v = \text{minimum}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	В	D	A	C	D	В	А	A	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	A	D	C	D	A	A	D	A	С

