Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 7

Topic :-WAVE OPTICS

1
(a)

The number of fringes shifting is decided by the extra path difference produced by introducing the glass plate. The extra path difference is $(\mu-1) t=n \lambda$
Or $(1.5-1) \times 0.1 \times 10^{-3}=n \times 500 \times 10^{-9}$
$\Rightarrow n=100$
(b)

The rings observed in reflected light are exactly complementary to those seen in transmitted light. Corresponding to every dark ring in reflected light there is a bright ring in transmitted light. The ray reflected at the upper surface of the air-film suffers no phase change while the ray reflected internally at the lower surface suffers a phase change of π.
(d)
$\lambda=600 \mathrm{~nm}=6 \times 10^{-7} \mathrm{~m}$
$a=1 \mathrm{~mm}=10^{-3} \mathrm{~m}, D=2 \mathrm{~m}$
Distance between the first dark fringes on either side of central bright fringe=width of central maximum

$$
\begin{aligned}
& =\frac{2 \lambda D}{a}=\frac{2 \times 6 \times 10^{-7} \times 2}{10^{-3}} \\
& =24 \times 10^{-4} \mathrm{~m}=2.4 \mathrm{~mm}
\end{aligned}
$$

(a)
$\mu_{v}=1$ and $\mu_{a}=1.003$
$\therefore \quad \frac{\lambda_{v}}{\lambda_{a}}=\frac{\mu_{a}}{\mu_{v}}=1.0003$
$x=\lambda_{v} n=\lambda_{a}(n+1)$
$\frac{n+1}{n}=\frac{\lambda_{v}}{\lambda_{a}}=1.0003$
$1+\frac{1}{n}=1.0003, \frac{1}{n}=0.0003$
$n=\frac{1}{0.0003}=\frac{10^{4}}{3}$
$\therefore x=\lambda_{a} n=6000 \times 10^{-7} \mathrm{~mm} \times \frac{10^{4}}{3}=2 \mathrm{~mm}$
(c)

Limit of resolution of the telescope
$a=\frac{1.22 \lambda}{a}=\frac{d}{x}$
Or $d=\frac{1.22 \lambda x}{a}$

$$
=\frac{1.22 \times 5 \times 10^{-7} \times 8 \times 10^{16}}{0.25}=1.95 \times 10^{11} \mathrm{~m}
$$

Phase difference $=\frac{2 \pi}{\lambda} \times$ path difference
ie, $\phi=\frac{2 \pi}{\lambda} \times \frac{\lambda}{6}=\frac{\pi}{3}$
As, $I=I_{\max } \cos ^{2}\left(\frac{\phi}{2}\right)$
Or $\frac{I}{I_{\max }}=\cos ^{2}\left(\frac{\phi}{2}\right)$
Or $\frac{I}{I_{0}}=\cos ^{2}\left(\frac{\pi}{6}\right)=\frac{3}{4}$
(c)

Two coherent source must have a constant phase difference otherwise they can not produce interference
(d)
$\beta=\frac{\lambda D}{d}=\frac{600 \times 10^{-9} \times 2}{1 \times 10^{-3}}=12 \times 10^{-4} \mathrm{~m}$
So, distance between the first dark fringes on either side of the central bright fringe
$X=2 \beta$
$=2 \times 12 \times 10^{-4} \mathrm{~m}$
$=24 \times 10^{-4} \mathrm{~m}=2.4 \mathrm{~mm}$
(a)

As the two bright fringes coincide
$\therefore n \lambda_{1}=(n+1) \lambda_{2}$
$\frac{n+1}{n}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{7500}{6000}=\frac{5}{4}$
$1+\frac{1}{n}=\frac{5}{4}, n=4$
(a)

When spherical waves are incident on a plane refracting surface, separating two media, the reflected waves have spherical wave fronts
(d)

Refractive index of a medium
$n=\tan i_{p}$
Where $i_{p}=$ Brewster's angle

$$
\Rightarrow i_{p}=\tan ^{-1}[n]
$$

19
(a)
$\beta \propto \lambda, \therefore \lambda_{v}=$ minimum

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	A	B	D	A	C	D	B	A	A	B	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	A	A	D	C	D	A	A	D	A	C	

