

Class : XIIth Date : Subject : PHYSICS DPP No. : 6

Topic :-.WAVE OPTICS

1. Which of the following diagrams represent the variation of electric field vector with time for a circularly polarized light

- 2. In a Young's experiment, one of the slits is covered with a transparen't sheet of thickness 3.6×10^{-3} cm due to which position of central fringe shifts to a position originally occupied by 30^{th} fringe. The refractive index of the sheet, if $\lambda = 6000 \text{ Å}$, is
- a) 1.5b) 1.2c) 1.3d) 1.73. The range of wavelength of the visible light is

a) 10 Å to 100 Å b) 4,000 Å to 8,000 Å c) 8,000 Å to 10,000 Å d) 10,000 Å to 15,000 Å 4. Radius of central zone of circular zone plate is 2.3*mm*. Wavelength of incident light is 5893 Å.

c) $\frac{c}{5}$

Source is at a distance of
$$6m$$
. Then the distance of first image will be
a) $9m$ b) $12m$ c) $24m$ d) $36m$

5. A heavenly body is receding from earth such that the fractional change in λ is 1, then its velocity is

6. The phenomenon of polarization of light indicates that

b) $\frac{3c}{5}$

- a) Light is a longitudinal wave
- b) Light is a transverse wave
- c) Light is not a wave
- d) Light travels with the velocity of $3 \times 10^8 \, {\rm ms}^{-1}$
- 7. When unpolarised light beam is incident from air onto glass (n = 1.5) at the polarizing angle a) Reflected beam is polarized 100 percent
 - b) Reflected and refracted beams are partially polarized
 - c) The reason for (a) is that almost all the light is reflected
 - d) All of the above

8. In the adjacent diagram, CP represents a wavefront and *AO* & *BP*, the corresponding two rays. Find the condition on θ for constructive interference at *P* between the ray *BP* and reflected ray

	$Q \xrightarrow{O} R$				
	$\int \theta \left[\theta \right]$				
	c/z d				
	A/ P				
	f_B				
	a) $\cos \theta = 3\lambda/2d$ b) $\cos \theta = \lambda/4d$ c) $\sec \theta - \cos \theta = \lambda/d$ d) $\sec \theta - \cos \theta = \lambda/d$	$=4\lambda/d$			
9.	The sun is rotating about its own axis. The spectral lines emitted from the two ends of its				
	equator, for an observer on the earth, will show				
	a) Shift towards red end				
	b) Shift towards violet end				
	c) Shift towards red end by one line and towards violet end by other				
10	a) No shift D. Evidence for the wave nature of light cannot be obtained from				
10.	a) Reflection b) Doppler effect c) Interference d) Diffraction				
11.	A mixture of light, consisting of wavelength 590 nm and an unknown wavelength, illuminates				
	Young's double slit and gives rise to two overlapping interference patterns on the screen. The				
	central maximum of both lights coincide. Further, it is observed that the third bright fringe of				
	known light coincides with <mark>the 4</mark> th bright fringe <mark>of unk</mark> nown light. From this data, the				
	wavelength of the unknown light is				
10	a) 393.4 nm b) 885.0 nm c) 442.5 nm d) 776.8 nm				
12.	A single slit Fraunhofer diffraction pattern is formed with white light. For what wavelength of				
	light the third secondary maximum in the diffraction pattern coincides with the second associated and the pattern for red light of wavelength 6500 Å2				
	a) 4400 Å b) 4100 Å c) 4642.8 Å d) 9100 Å				
13.	3. A narrow slit of width 2mm is illuminated by monochromatic light of wavelength 500nm	. The			
	distance between the first minima on either side on a screen at a distance of 1 <i>m</i> is				
	a) 5mm b) 0.5mm c) 1mm d) 10mm				
14.	4. Which of following can not be polarized				
	a) Radio waves b) Ultraviolet rays c) Infrared rays d) Ultrasonic wav	ves			
15.	In Young's experiment, the distance between the slits is reduced to half and the distance				
	between the slit and screen is doubled, then the fringe width				
	a) Will he doubled				
16	c) will be doubled a grant of will be doubled a grant of while be doubled to the solution of wavelengths 600 nm and 6 In a Young's double slit experiment using red and blue lights of wavelengths 600 nm and	1 4 8 0			
10.	nm respectively, the value of n from which the n^{th} red fringe coincides with $(n + 1)$ the blue				
	fringe is				
	a) 5 b) 4 c) 3 d) 2				
17.	7. In Young's experiment, the third bright band for light of wavelength 6000 Å coincides with	h the			

fourth bright band for a	another source of light i	n the same arrangement	. Then the wavelength		
of second source is					
a) 3600 Å	b) 4000 Å	c) 5000 Å	d)4500 Å		

18. In Fresnel's biprism ($\mu = 1.5$) experiment the distance between source and biprism is 0.3 m
and that between biprism and screen is 0.7m and angle of prism is 1°. The fringe width with
light of wavelength 6000 Å will be
a) 3 cmb) 0.011 cmc) 2 cmd) 4 cm

- 19. The rectilinear propagation of light in a medium is due to its
a) High Velocityb) Large wavelengthc) High frequencyd) Source
- 20. If an interference pattern has maximum and minimum intensities in 36 : 1 ratio then what will be the ratio of amplitudes
 - a) 5 : 7 b) 7 : 4 c) 4 : 7 d) 7 : 5

