

Class: XIIth

Date:

Subject: PHYSICS

DPP No.: 5

		Topi	c :WAVE (PTICS			
1.	The speed of electromagnetic wave in vacuum depends upon the source of radiation						
	a) Increases as we move from γ -rays to radio waves		s to radio b) De wa	b) Decreases as we move from γ -rays to radio waves			
	c) Is same for all of them		d) No	d) None of these			
2.	In Young's double slit experiment the amplitudes of two sources are $3a$ and a respectively. The						
	ratio of intensities of bright and dark fringes will be						
	a) 3 : 1	b) 4:1	c) 2 :	1	d)9:1		
3.	Illumination of the sun at noon is maximum because						
	a) Scattering is	reduced at noon	b) Re	fraction of lig	ht is minimum at noor	1	
	c) Rays are incid	dent almost <mark>norm</mark> all	y d) Th	e sun is neare	er to earth at noon		
4.	The intensity of gamma rad <mark>iation from a give</mark> n source is <i>I</i> . On passing through 36 <i>mm</i> of lead, it						
	is reduced to $\frac{I}{8}$.	The thickne <mark>ss of</mark> lea	d <mark>which</mark> will redu	ce the intensi	ty to $\frac{I}{2}$ will be		
	a) 18 mm	b) 12 mm	c) 6 n	nm	d) 9 <i>mm</i>		
5.	The pressure ex	erted by an electron	nagnetic wave of	intensity <i>I(w</i>	$atts/m^2$) on a nonrefle	ecting	
	surface is [c is the velocity of light]						
	a) <i>Ic</i>	b) Ic^2	c) I/a		$d)I/c^2$		
6.	In an interference experiment, third bright fringes are obtained at a point on the screen with a						
	light of 700 nm. What should be the wavelength of the light source in order to obtain 5 th bright						
	fringe at the same point?						
	a) 630 nm	b) 500 nm	c) 42	0 nm	d) 750 nm		
7.	=	is illuminated with	a monochromatic	light of wave	length λ from a distan	ıt	
	source and the diffraction pattern is observed on a screen placed at a distance D from the slit.						
	To increase the width of the central maximum one should						
	a) Decrease <i>D</i>		b) De	crease a			
	c) Decrease λ		•		ot be changed		
8.	Light from two coherent sources of the same amplitude A and wavelength λ illuminates the						
	screen. The intensity of the central maximum is I_0 . If the sources were incoherent, the						
	intensity at the same point will be						
	-	•	> I		$_{12}I_0$		
	a) $4I_0$	b) 2 <i>I</i> ₀	c) <i>I</i> ₀		d) $\frac{I_0}{2}$		
9.	Two parallel sli	ts 0.6 mm apart are	illuminated by lig	ht source of v	vavelength 6000 Å. Th	e	
	distance between two consecutive dark fringes on a screen 1 <i>m</i> away from the slits is						
	a) 1 <i>mm</i>	b) 0.01 mm	c) 0.1		d) 10 <i>m</i>		

10.	As a result of interference of two coherent sources of light energy is						
	a) Redistributed and the distribution does not very with time						
	b) Increased						
	c) Redistributed and that distribution changes with time						
11	d) Decreased Which of the following statements indicates that light waves are transverse						
11.	a) Light waves can travel in vacuum		b) Light waves show interference				
	c) Light waves can be p		d) Light waves can be diffracted				
12.	Huygen's principle of secondary wavelets may be used to						
			b) Explain the particle behavior of light				
	c) Find the new position	on of the wavefront	d) Explain photoelectric effect				
13.	To demonstrate the phenomenon of interference, we require two sources which emit radiation						
	a) Of the same frequency and having a definite b) Of nearly the same frequency						
	phase relationship c) Of the same frequen	OV.	d) Of different wavelengths				
14	The electric and the magnetic field, associated with an e .m. wave propagating along the $\pm z$ -						
	axis, can be represented by						
		b) $\left[\vec{E} = E_0 \hat{j}, \vec{B} = B_0 \hat{j}\right]$	c) $[\vec{E} = E_0 \hat{k}, \vec{B} = B_0 \hat{i}]$	d) $[\vec{E} = E_0 \hat{j}, \vec{B} = B_0 \hat{i}]$			
15.	In Young's double slit expe <mark>riment with sodi</mark> um vapour lamp of wavelength 589 nm and the slits						
	0.589 mm apart, the half an <mark>gular</mark> width of the central maximum is						
	a) $\sin^{-1}(0.01)$	- /	c) $\sin^{-1}(0.001)$	- · · · · · · · · · · · · · · · · · · ·			
16.	In Young's double slit experiment intensity at a point is (1/4) of the maximum intensity.						
	Angular position of this	s point is b) $\sin^{-1}(\lambda/2d)$	a) $\sin^{-1}(1/2d)$	$d \sin^{-1}(1/4d)$			
17							
1/.	If the separation between slits in Young's double slit experiment is reduced to $\frac{1}{3}rd$, the fringe						
	width becomes n times		c) 9	1			
	a) 3	b) $\frac{1}{3}$	0,9	d) $\frac{1}{9}$			
18.	Wave nature of light follows because						
	a) Light rays travel in a straight line						
	b) Light exhibits the phenomena of reflection and refraction						
	c) Light exhibits the phenomena of interference						
19	d) Light causes the phenomena of photoelectric effect Which radiation in sunlight, causes heating effect						
1).	a) Ultraviolet	b) Infrared	c) Visible light	d) All of these			
20.	In a given direction, the intensities of the scattered light by a scattering substance for two						
	beams of light are in the ratio of 256:81. The ratio of the frequency of the first beam to the						
	frequency of the second beam is						
	a) 64 :127	b) 1 :2	c) 64 :27	d) None of these			