

Class: XIIth

Date:

Solutions

Subject : PHYSICS

DPP No. : 4

Topic:-WAVE OPTICS

Distance of n^{th} maxima, $x = n\lambda \frac{D}{d} \propto \lambda$

As
$$\lambda_b < \lambda_g$$

$$x_{blue} < x_{green}$$

Wave is uv rays

The resultant intensity at any point P is

$$I = 4I_0 \cos^2\left(\frac{\Phi}{2}\right)$$

$$\therefore I_0 = 4I_0 \cos^2 \phi/2$$

Or
$$\cos \frac{\phi}{2} = \frac{1}{2}$$

$$\therefore \frac{\Phi}{2} = \frac{\pi}{3} \text{ or } \Phi = \frac{2\pi}{3}$$

If Δx is the corresponding value of path difference at P, then

$$\phi = \frac{2\pi}{\lambda}(\Delta x)$$

$$\frac{2\pi}{3} = \frac{2\pi}{\lambda} \Delta x.$$

As
$$\Delta x = \frac{xd}{D}$$

$$\therefore \frac{1}{3} = \frac{1}{\lambda} \frac{xd}{D}$$

Or
$$x = \frac{\lambda}{3d/D} = \frac{6 \times 10^{-7}}{3 \times 10^{-4}} = 2 \times 10^{-3} \text{m}$$

$$x = 2$$
mm

This is the difference of point P from central maximum.

4 (c)

Momentum of the electron will increase. So the wavelength $(\lambda = h/p)$ of electrons will decrease and fringe width decreases as $\beta \propto \lambda$

5 **(a**

As velocity of light is perpendicular to the wavefront, and light is travelling in vacuum along the y — axis, therefore, the wavefront is represented by y = constant.

6 **(a)**

When distance between screen and source is D, and d the distance between coherent sources, then fringe width (W) is given by

Where λ is wavelength of monochromatic light.

$$\lambda = \frac{Wd}{D}$$

Given,
$$D = 1$$
 m, $d = 1$ mm $= 10^{-3}$ m,

$$W = 0.06 \text{ cm} = 0.06 \times 10^{-2} \text{m}$$

$$\therefore \ \lambda = \frac{0.06 \times 10^{-2} \times 10^{-3}}{1}$$

$$= 6 \times 10^{-7} \text{m} = 6000 \text{ Å}$$

7 **(b**

From
$$I_R = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \phi$$

When
$$\phi = 0^{\circ}$$
, $I_R = I + I + 2\sqrt{II}\cos 0^{\circ} = 4I$

When $\phi = 90^{\circ}$

$$I_R' = I + I + 2\sqrt{II}\cos 90^\circ = 2I$$

$$\frac{I_R}{I_R'} = \frac{4I}{2I} = 2:1$$

8 **(c)**

When one slit is closed, amplitude becomes half and intensity becomes 1/4th

$$ie_{I_0} = \frac{1}{4}I$$
 or $I = 4I_0$

9 **(b**)

Here, wavelength, $\lambda = 625nm = 625 \times 10^{-9}m$

Number of lines per meter, $N = 2 \times 10^5$

For principal maxima is grating spectra $\frac{\sin \theta}{N} = n\lambda$,

Where n(=1,2,3) is the order of principal maxima and θ is the angle of diffraction. The maximum value of $\sin \theta$ is 1

$$\therefore n = \frac{1}{N\lambda} = \frac{1}{2 \times 10^5 \times 625 \times 10^{-9}} = 8$$

$$\therefore$$
 Number of maxima = $2n + 1 = 2 \times 8 + 1 = 17$

10 **(b)**

Here,
$$n_1 = 12$$
, $\lambda_1 = 600$ nm

$$n_2 = ?$$
, $\lambda_2 = 400 \text{ nm}$

As
$$n_1\lambda_1 = n_2\lambda_2$$

$$\therefore n_2 = \frac{n_1 \lambda_1}{\lambda_2} = \frac{12 \times 600}{400} = 18$$

11 **(d)**

For 5th dark fringe,
$$x_1 = (2n-1)\frac{\lambda D}{2d} = \frac{9\lambda D}{2d}$$

For 7th bright fringe,
$$x_2 = n\lambda \frac{D}{d} = \frac{7\lambda D}{d}$$

$$x_2 - x_1 = (\mu - 1)t\frac{D}{d}$$

$$\frac{\lambda D}{d} \left[7 - \frac{9}{2} \right] = (\mu - 1)t \frac{D}{d}$$

$$t = \frac{2.5\lambda}{(\mu - 1)}$$

12 **(d)**

Let it take t sec for astronaut to acquire a velocity of 1 ms^{-1} . Then energy of photons = 10 t

Momentum
$$=\frac{10t}{C} = 80 \times 1$$

$$t = \frac{80 \times 1 \times 3 \times 10^8}{10} = 2.4 \times 10^9 sec$$

13 **(b**

In Young's double slit experiment if white light is used instead of monochromatic light, then we shall get a white fringe at the centre surrounded on either side with some coloured fringes, with violet fringe in the beginning and red fringe in the last.

14 **(b)**In simple slit diffraction experiment, width of central maxima

$$y = \frac{2\lambda D}{d}$$

$$\therefore \frac{y_1}{v_2} = \frac{\lambda_1}{\lambda_2} \times \frac{d_2}{d_1}$$

$$=\frac{400}{600}\times\frac{d/2}{d}=\frac{1}{3}$$

$$y_2 = 3y_1$$

15 **(a)**

The essential condition for sustained interference is constancy of phase difference

16 **(d)**

Fringe width $\beta = \frac{\lambda D}{d}$

Where D is the distance between slit and screen, d is the distance between two slits, λ is the wavelength of light

$$\therefore \Delta \beta = \frac{\lambda \Delta D}{d}$$

$$\Delta \beta d = 10^{-3}$$

$$\Rightarrow \lambda = \frac{\Delta\beta d}{\Delta D} = \frac{10^{-3} \times 0.03 \times 10^{-3}}{5 \times 10^{-2}} = \frac{10^{-3} \times 3 \times 10^{-5}}{5 \times 10^{-2}}$$

$$= 6 \times 10^{-7} m = 6000 \text{Å}$$

17 **(a)**

Polarization is shown by only transverse waves

18 **(b**)

Polarizer produces polarized light

19 **(b**)

The magnitude of electric field vector varies periodically with time because it is the form of electromagnetic wave

20 **(b**)

$$I_{max} = I = I_1 + I_2 + 2\sqrt{I_1 I_2}$$

When width of each slit is doubled, intensity from each slit becomes twice ie,

$$I_1' = 2I_1$$
 and $I_2' = 2I_2$

$$\therefore I'_{max} = I' = I'_1 + I'_2 + 2\sqrt{I'_1 \times I'_2}$$

$$= 2I_1 + 2I_2 + 2\sqrt{2I_1 \times 2I_2}$$

$$= 2(I_1 + I_2 + 2\sqrt{I_1 \times I_2}) = 2I$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
Α.	С	D	В	С	A	A	В	С	В	В
Q.	11	12	13	14	15	16	17	18	19	20
Α.	D	D	В	В	A	D	A	В	В	В

