Class : XIIth
Solutions

## Topic :-WAVE OPTICS

1
(c)

Distance of $n^{\text {th }}$ maxima, $x=n \lambda_{\frac{D}{d}}^{D} \propto \lambda$
As $\lambda_{b}<\lambda_{g}$
$\therefore x_{\text {blue }}<x_{\text {green }}$

2
(d)

Wave is $u v$ rays
3
(b)

The resultant intensity at any point $P$ is
$I=4 I_{0} \cos ^{2}\left(\frac{\phi}{2}\right)$

$\therefore I_{0}=4 I_{0} \cos ^{2} \phi / 2$
Or $\cos \frac{\Phi}{2}=\frac{1}{2}$
$\therefore \frac{\phi}{2}=\frac{\pi}{3}$ or $\phi=\frac{2 \pi}{3}$
If $\Delta x$ is the corresponding value of path difference at $P$, then
$\phi=\frac{2 \pi}{\lambda}(\Delta x)$
$\frac{2 \pi}{3}=\frac{2 \pi}{\lambda} \Delta x$.
As $\Delta x=\frac{x d}{D}$
$\therefore \frac{1}{3}=\frac{1}{\lambda} \frac{x d}{D}$
Or $x=\frac{\lambda}{3 d / D}=\frac{6 \times 10^{-7}}{3 \times 10^{-4}}=2 \times 10^{-3} \mathrm{~m}$
$x=2 \mathrm{~mm}$
This is the difference of point $P$ from central maximum.
(c)

Momentum of the electron will increase. So the wavelength ( $\lambda=h / p$ ) of electrons will decrease and fringe width decreases as $\beta \propto \lambda$
(a)

As velocity of light is perpendicular to the wavefront, and light is travelling in vacuum along the $y$ - axis, therefore, the wavefront is represented by $y=$ constant.
(a)

When distance between screen and source is $D$, and $d$ the distance between coherent sources, then fringe width $(W)$ is given by
$W=\frac{D \lambda}{d}$


Where $\lambda$ is wavelength of monochromatic light.
$\lambda=\frac{W d}{D}$
Given, $D=1 \mathrm{~m}, d=1 \mathrm{~mm}=10^{-3} \mathrm{~m}$,
$W=0.06 \mathrm{~cm}=0.06 \times 10^{-2} \mathrm{~m}$
$\therefore \lambda=\frac{0.06 \times 10^{-2} \times 10^{-3}}{1}$

$$
=6 \times 10^{-7} \mathrm{~m}=6000 \AA
$$

(b)

From $I_{R}=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \phi$
When $\phi=0^{\circ}, I_{R}=I+I+2 \sqrt{I I} \cos 0^{\circ}=4 I$
When $\phi=90^{\circ}$
$I_{R}^{\prime}=I+I+2 \sqrt{I I} \cos 90^{\circ}=2 I$
$\frac{I_{R}}{I_{R}^{\prime}}=\frac{4 I}{2 I}=2: 1$
(c)

When one slit is closed, amplitude becomes half and intensity becomes $1 / 4$ th
$i e, I_{0}=\frac{1}{4} I$ or $\mathrm{I}=4 I_{0}$
(b)

Here, wavelength, $\lambda=625 \mathrm{~nm}=625 \times 10^{-9} \mathrm{~m}$
Number of lines per meter, $N=2 \times 10^{5}$
For principal maxima is grating spectra $\frac{\sin \theta}{N}=n \lambda$,
Where $n(=1,2,3)$ is the order of principal maxima and $\theta$ is the angle of diffraction The maximum value of $\sin \theta$ is 1
$\therefore n=\frac{1}{N \lambda}=\frac{1}{2 \times 10^{5} \times 625 \times 10^{-9}}=8$
$\therefore$ Number of maxima $=2 n+1=2 \times 8+1=17$
(b)

Here, $n_{1}=12, \lambda_{1}=600 \mathrm{~nm}$
$n_{2}=?, \lambda_{2}=400 \mathrm{~nm}$
As $n_{1} \lambda_{1}=n_{2} \lambda_{2}$
$\therefore \quad n_{2}=\frac{n_{1} \lambda_{1}}{\lambda_{2}}=\frac{12 \times 600}{400}=18$

For $5^{\text {th }}$ dark fringe, $x_{1}=(2 n-1) \frac{\lambda D}{2 d}=\frac{9 \lambda D}{2 d}$

For $7^{\text {th }}$ bright fringe, $x_{2}=n \lambda \frac{D}{d}=\frac{7 \lambda D}{d}$
$x_{2}-x_{1}=(\mu-1) t \frac{D}{d}$
$\frac{\lambda D}{d}\left[7-\frac{9}{2}\right]=(\mu-1) t \frac{D}{d}$
$t=\frac{2.5 \lambda}{(\mu-1)}$
(d)

Let it take $t \sec$ for astronaut to acquire a velocity of $1 \mathrm{~ms}^{-1}$. Then energy of photons

$$
=10 t
$$

Momentum $=\frac{10 t}{C}=80 \times 1$
$t=\frac{80 \times 1 \times 3 \times 10^{8}}{10}=2.4 \times 10^{9} \mathrm{sec}$
(b)

In Young's double slit experiment if white light is used instead of monochromatic light, then we shall get a white fringe at the centre surrounded on either side with some coloured fringes, with violet fringe in the beginning and red fringe in the last.
(b)

In simple slit diffraction experiment, width of central maxima
$y=\frac{2 \lambda D}{d}$
$\therefore \frac{y_{1}}{y_{2}}=\frac{\lambda_{1}}{\lambda_{2}} \times \frac{d_{2}}{d_{1}}$
$=\frac{400}{600} \times \frac{d / 2}{d}=\frac{1}{3}$
$y_{2}=3 y_{1}$
(a)

The essential condition for sustained interference is constancy of phase difference
(d)

Fringe width $\beta=\frac{\lambda D}{d}$
Where $D$ is the distance between slit and screen, $d$ is the distance between two slits, $\lambda$ is the wavelength of light

$$
\begin{aligned}
& \therefore \Delta \beta=\frac{\lambda \Delta D}{d} \\
& \Rightarrow \lambda=\frac{\Delta \beta d}{\Delta D}=\frac{10^{-3} \times 0.03 \times 10^{-3}}{5 \times 10^{-2}}=\frac{10^{-3} \times 3 \times 10^{-5}}{5 \times 10^{-2}} \\
& =6 \times 10^{-7} \mathrm{~m}=6000 \AA
\end{aligned}
$$

(a)

Polarization is shown by only transverse waves
(b)

Polarizer produces polarized light
(b)

The magnitude of electric field vector varies periodically with time because it is the form of electromagnetic wave
(b)
$I_{\text {max }}=I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}}$
When width of each slit is doubled, intensity from each slit becomes twice $i e$,

$$
I_{1}^{\prime}=2 I_{1} \text { and } I_{2}^{\prime}=2 I_{2}
$$

$\therefore I_{\text {max }}^{\prime}=I^{\prime}=I_{1}^{\prime}+I_{2}^{\prime}+2 \sqrt{I_{1}^{\prime} \times I_{2}^{\prime}}$
$=2 I_{1}+2 I_{2}+2 \sqrt{2 I_{1} \times 2 I_{2}}$
$=2\left(I_{1}+I_{2}+2 \sqrt{I_{1} \times I_{2}}\right)=2 I$

| ANSWER-KEY |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| A. | C | D | B | C | A | A | B | C | B | B |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |  |
| A. | D | D | B | B | A | D | A | B | B | B |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

