

Class: XIIth

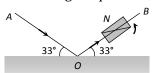
Date:

Subject: PHYSICS

DPP No.: 2

		Topic :	WAVE OPTICS			
1.	For a wave propaga) Velocity c) Frequency	gating in a medium, id	b) Wavelength	he property that is independent of the others b) Wavelength d) All these depend on each other		
2. In Young's double alit experiment, the seventh maximum with wavelength λ_1 is at a distance d_1 . Then $d_1/d_2 = d_1$						
	a) $\frac{\lambda_1}{\lambda_2}$	$\mathrm{b})\frac{\lambda_2}{\lambda_1}$	c) $\frac{\lambda_1^2}{\lambda_2^2}$	$\mathrm{d})\frac{\lambda_2^2}{\lambda_1^2}$		
3.	_	water see <mark>ms co</mark> loured sness of th <mark>e oil</mark> film sh b) 10000 Å	due to interference. For ould be c) 1 mm	observing this effect, the d) 1 cm		
4.	The wave theory (a) Maxwell	of light w <mark>as given by</mark> b) P <mark>lanck</mark>	c) Huygen	d) Young		
5. In Young's double slit experiment, the phase difference between the light waves bright fringe from the central fringe will be $(\lambda = 6000\text{Å})$						
(a) Zero	b) 2π	c) 4π	d) 6π		
6.	a) They are monoc c) They are cohere		b) They are high	b) They are highly polarized d) They have high degree of parallelism		
7.		-		matic illumination, the first the third maximum at λ_2 . So d) $0.3\lambda_1 = 3\lambda_2$		

8. White light is used to illuminate the two slits in a Young's double slit experiment. The separation between slits is b and the screen is at a distance d(>>b) from the slits. At a point on the screen directly in front of one of the slits, certain wavelengths are missing, figure. Some of these missing wavelengths are


a)
$$\lambda = \frac{b^2}{d}, \frac{2b^2}{3d}$$

a)
$$\lambda = \frac{b^2}{d}, \frac{2b^2}{3d}$$
 b) $\lambda = \frac{b^2}{2d}, \frac{3b^2}{2d}$ c) $\lambda = \frac{2b^2}{3d}$ d) $\lambda = \frac{3b^2}{4d}$

c)
$$\lambda = \frac{2b^2}{3d}$$

$$d) \lambda = \frac{3b^2}{4d}$$

A beam of light AO is incident on a glass slab ($\mu = 1.54$) in a direction as shown in figure. The reflected ray *OB* is passed through a Nicol prism. On viewing through a Nicole prism, we find on rotating the prism that

- a) The intensity is reduced down to zero and remains zero
- b) The intensity reduces down some what and rises again
- c) There is no change in intensity
- d) The intensity gradually reduces to zero and then again increases
- 10. A parallel beam of fast moving electrons is incident normally on a narrow slit. A screen is placed at a large distance from the slit. If the speed of the electrons is increased, which of the following statement is correct?
 - a) Diffraction pattern is not observed on the screen in the case of electrons
 - b) The angular width of the central maximum of the diffraction pattern will increase
 - c) The angular width of the central maximum will decrease
 - d) The angular width of the central maximum will remains the same
- 11. Which of the following radiations has the least wavelength
 - a) γ-rays
- b) β -rays
- c) α-rays
- d) X-rays
- 12. Which of the following waves have the maximum wavelength
 - a) X-rays
- b) I.R. rays
- c) UV rays
- d) Radio waves

13.	A circular disc is placed in front of a narrow source. When the point of observation is $2 m$ from					
	the disc, then it covers first HPZ. The intensity at this point is <i>I</i> . When the point of observation					
	is 25 <i>cm</i> from the disc	then intensity will be				
	a) $\left(\frac{R_6}{R_2}\right)^2 I$	b) $\left(\frac{R_7}{R_2}\right)^2 I$	c) $\left(\frac{R_8}{R_2}\right)^2 I$	$d\left(\frac{R_9}{R_2}\right)^2 I$		
	a) $\left(\overline{R_2}\right) I$	b) $\left(\overline{R_2}\right) I$	c) $\left(\overline{R_2}\right) I$	$d\left(\frac{R_2}{R_2}\right)I$		
14.	A light of wavelength 5890 Å falls normally on a thin air film. The minimum thickness of the					
	film such that the film appears dark in reflected light is					
	a) $2.945 \times 10^{-7} m$	b) $3.945 \times 10^{-7} m$	c) $4.95 \times 10^{-7} m$	d) $1.945 \times 10^{-7} m$		
15.	Polarizing angle for water is $53^{\circ}4'$. If light is incident at this angle on the surface of water and					
	reflected, the angle of refraction is					
	a) 53°4′	b) 126°56′	c) 36°56′	d) 30°4′		
	In Young's double slit experiment, the separation between the slit and the screen increases.					
	The fringe width					
	a) Increases b) Decreases c) Remains unchanged d) None of these					
17.	In which of the following is the interference due to the division of wavefront?					
	a) Young's double slit experiment					
	b) Fresnel's biprism experiment					
	c) Liyod's mirror experiment					
10	d) Demonstration colours of thin film					
18.	Air has refractive index 1.0 <mark>003. The thickness of air column, which will have one more wavelength of yellow light (6000Å) than in the same thickness of vacuum is</mark>					
	•	•				
10	a) 2 mm	b) 2 cm	c) 2 m	d) 2 km		
19.	A star emitting radiation at a wavelength of 5000Å is approaching earth with a velocity of $1.5 \times 10^6 m/s$. The change in wavelength of the radiation as received on the earth, is					
	a) 25Å	b) Zero	c) 100Å	d) 2.5Å		
20	•	,		,		
20.	In Young's double slit experiment when wavelength used is 6000Å and the screen is 40 <i>cm</i> from the slits, the fringes are 0.012 <i>cm</i> wide. What is the distance between the slits					
	a) 0.024 <i>cm</i>	b) 2.4 <i>cm</i>	c) $0.24 cm$	d) 0.2 <i>cm</i>		
	a) 0.024 cm	0) 2.4 cm	c) 0.24 cm	uj 0.2 cm		