

(a)

Solutions

Subject : PHYSICS DPP No. : 10

Topic :- WAVE OPTICS

1

In a single slit diffraction experiment, position of minima is given by $d\sin\theta = n\lambda$ So for first minima of red $\sin\theta = 1 \times \left(\frac{\lambda_R}{d}\right)$

and as first maxima is midway between first and second minima, for wavelength λ' , Its position will be

$$d\sin\theta' = \frac{\lambda' + 2\lambda'}{2} \Rightarrow \sin\theta' = \frac{3\lambda'}{2d}$$

According to given condition $\sin\theta = \sin\theta'$
$$\Rightarrow \lambda' = \frac{2}{3}\lambda_R \text{ so } \lambda' = \frac{2}{3} \times 660 = 440nm = 4400\text{\AA}$$

(c)
$$\sin\theta = \frac{\lambda}{d}$$
$$= \frac{589 \times 10^{-9}}{0.589 \times 10^{-3}} = 10^{-3} = \frac{1}{1000} = 0.001$$

(c) Huygen's wave theory fails to explain the particle nature of light (*i.e.*, photoelectric effect)

5

2

In diffraction pattern, fringe width is proportional to λ . We know that wavelength of violet light is less than that of red light, so on replacing red light with violet light, diffraction pattern would become narrower.

6

Width of the diffraction band is given by

 $\beta = \frac{\lambda D}{d}$

(b)

(c)

Where D = distance between slit and the screen

 λ = wavelength of light used and

d = width of slit.

Hence, width of the diffraction band varies directly as the distance between the slit and the screen.

8

The equation of *n*th principal maxima for wavelength λ is given by

 $(a+b)\sin\theta = n\lambda$

Where *a* is the width of transparent portion and *b* is that of opaque portion. The width (a + b) is called the grating element.

The spectral lines will overlap, ie, they will have the same angle of diffraction of

 $\lambda_1 = \lambda_2$

(c)

When a line of wavelength λ_1 in order n_1 coincides with a line of unknown wavelength λ_2 in order n_2 , then

 $n_2\lambda_2 = n_1\lambda_1$

Or $\frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$

(b)

(b)

(c)

(c)

9

Ozone layer absorbs m<mark>ost o</mark>f the UV rays emitted by sun

10

EM waves carry momentum and hence can exert pressure on surfaces. They also transfer energy to the surface so $p \neq 0$ and $E \neq 0$

11

 $K = 0.5 \times 10^{3}$ $\frac{2\pi}{\lambda} = 0.5 \times 10^{3} \Rightarrow \lambda = \frac{2\pi}{0.5} \times 10^{-3}$ $\lambda = 12.76mm$ $\lambda \text{ lies in range of microwave}$

12

In 1903, the American scientists Nicols and Hull measured the radiation pressure of visible light. It was found to be of the order of $7 \times 10^{-6} N/m^2$

13 **(d)**

Interference is shown by electromagnetic as well as mechanical waves

14 **(c)**

As
$$x = n_1 \beta_1 = n_2 \beta_2 = n_2 \lambda_1 = n_2 \lambda_2$$

$$\therefore n_2 = \frac{n_1 \lambda_1}{\lambda_2} = \frac{60 \times 4000}{6000} = 40$$

15

(c)

When a beam of light is used to determine the position of an object, the maximum accuracy

is achieved if the light is shorter wavelength, because

Accuracy $\propto \frac{1}{Wavelength}$

17

(b)

(b)

(c)

 $I_{\text{max}} = I_1 + I_2 + 2\sqrt{I_1 I_2}$ So, $I_{\text{max}} = I + 4I + 2\sqrt{I.4I} = 9I$

18

Newton's of oscillations in coherence length l = 0.024

$$\frac{\tau}{\lambda} = \frac{0.024}{5900 \times 10^{-10}}$$
$$= 40677.9 = 4.068 \times 10^4$$

19

When white light is used in a biprism experiment, central spot will be white, while the surronding fringes will be colored.

20 **(d)**

Intensity
$$\propto \frac{1}{r^2}$$

$$\frac{I_2}{I_1} = \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{r_1}{r_1(1+2\%)}\right)^2$$

$$I_2 = I_1(1+2\%)^{-2}$$
Expanding by binomial theorem $\Rightarrow I_2 = I_1(1-4\%)$
 \therefore Intensity decreases by 4%

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	С	В	С	В	С	C	С	В	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	С	D	С	С	С	В	В	C	D

