Class : XIIth
Solutions

Topic :-WAVE OPTICS

1

2
(c)

$$
\begin{aligned}
& \sin \theta=\frac{\lambda}{d} \\
& =\frac{589 \times 10^{-9}}{0.589 \times 10^{-3}}=10^{-3}=\frac{1}{1000}=0.001
\end{aligned}
$$

(a)

So for first minima of red $\sin \theta=1 \times\left(\frac{\lambda_{R}}{d}\right)$ Its position will be
$d \sin \theta^{\prime}=\frac{\lambda^{\prime}+2 \lambda^{\prime}}{2} \Rightarrow \sin \theta^{\prime}=\frac{3 \lambda^{\prime}}{2 d}$
According to given condition $\sin \theta=\sin \theta^{\prime}$
$\Rightarrow \lambda^{\prime}=\frac{2}{3} \lambda_{R}$ so $\lambda^{\prime}=\frac{2}{3} \times 660=440 \mathrm{~nm}=4400 \AA$
(c)
(b) pattern would become narrower.
(c)

In a single slit diffraction experiment, position of minima is given by $d \sin \theta=n \lambda$
and as first maxima is midway between first and second minima, for wavelength λ^{\prime},

Huygen's wave theory fails to explain the particle nature of light (i.e., photoelectric effect)

In diffraction pattern, fringe width is proportional to λ. We know that wavelength of violet light is less than that of red light, so on replacing red light with violet light, diffraction

Width of the diffraction band is given by
$\beta=\frac{\lambda D}{d}$
Where $D=$ distance between slit and the screen
$\lambda=$ wavelength of light used and
$d=$ width of slit.

Hence, width of the diffraction band varies directly as the distance between the slit and the screen.
(c)

The equation of nth principal maxima for wavelength λ is given by
$(a+b) \sin \theta=n \lambda$
Where a is the width of transparent portion and b is that of opaque portion. The width ($a+b$) is called the grating element.

The spectral lines will overlap, $i e$, they will have the same angle of diffraction of
$\lambda_{1}=\lambda_{2}$
When a line of wavelength λ_{1} in order n_{1} coincides with a line of unknown wavelength λ_{2} in order n_{2}, then
$n_{2} \lambda_{2}=n_{1} \lambda_{1}$
Or $\frac{\lambda_{1}}{\lambda_{2}}=\frac{n_{2}}{n_{1}}$
(b)

Ozone layer absorbs most of the $U V$ rays emitted by sun
(b)

EM waves carry momentum and hence can exert pressure on surfaces. They also transfer energy to the surface so $p \neq 0$ and $E \neq 0$
(c)
$K=0.5 \times 10^{3}$
$\frac{2 \pi}{\lambda}=0.5 \times 10^{3} \Rightarrow \lambda=\frac{2 \pi}{0.5} \times 10^{-3}$
$\lambda=12.76 \mathrm{~mm}$
λ lies in range of microwave
(c)

In 1903, the American scientists Nicols and Hull measured the radiation pressure of visible light. It was found to be of the order of $7 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}$
(d)

Interference is shown by electromagnetic as well as mechanical waves
(c)

As $x=n_{1} \beta_{1}=n_{2} \beta_{2}=n_{2} \lambda_{1}=n_{2} \lambda_{2}$
$\therefore n_{2}=\frac{n_{1} \lambda_{1}}{\lambda_{2}}=\frac{60 \times 4000}{6000}=40$
(c)

When a beam of light is used to determine the position of an object, the maximum accuracy
is achieved if the light is shorter wavelength, because
Accuracy $\propto \frac{1}{\text { Wavelength }}$
(b)
$I_{\text {max }}=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}}$
So, $I_{\text {max }}=I+4 I+2 \sqrt{I .4 I}=9 I$
(b)

Newton's of oscillations in coherence length
$\frac{l}{\lambda}=\frac{0.024}{5900 \times 10^{-10}}$
$=40677.9=4.068 \times 10^{4}$
(c)

When white light is used in a biprism experiment, central spot will be white, while the surronding fringes will be colored.
(d)

Intensity $\propto \frac{1}{r^{2}}$
$\frac{I_{2}}{I_{1}}=\left(\frac{r_{1}}{r_{2}}\right)^{2}=\left(\frac{r_{1}}{r_{1}(1+2 \%)}\right)^{2}$
$I_{2}=I_{1}(1+2 \%)^{-2}$
Expanding by binomial theorem $\Rightarrow I_{2}=I_{1}(1-4 \%)$
\therefore Intensity decreases by 4%

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	A	C	B	C	B	C	C	C	B	B	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	C	C	D	C	C	C	B	B	C	D	

