Class: XIIth
Date :

Topic :- WAVE OPTICS

1
(d)
$d \sin \theta=n \lambda$
$0.3 \times 10^{-3} \times \theta=6000 \times 10^{-10}$
$\theta=2 \times 10^{-3} \mathrm{rad}$
(a)
$I_{0}=R^{2}=\frac{R_{2}^{2}}{4}$
Number of $H P Z$ covered by the disc at $b=25 \mathrm{~cm}$
$n_{1} b_{1}=n_{2} b_{2}$
$n_{2}=\frac{n_{1} b_{1}}{b_{2}}=\frac{1 \times 1}{0.25}=4$
Hence the intensity at this point is
$I=R^{\prime 2}=\left(\frac{R_{5}}{2}\right)^{2}=\left(\frac{R_{5}}{R_{4}} \times \frac{R_{4}}{R_{3}} \times \frac{R_{3}}{R_{2}}\right)^{2} \times\left(\frac{R_{2}}{2}\right)^{2}$
$I=(0.9)^{6} I_{0}$
$I_{1}=0.531 I_{0}$
Hence the correct answer will be (a)
3
(c)
$I=I_{\max } \cos ^{2}\left(\frac{\phi}{2}\right)$
$\therefore \frac{I_{\text {max }}}{4}=I_{\text {max }} \cos ^{2} \frac{\phi}{2}$
$\cos \frac{\phi}{2}=\frac{1}{2}$
Or $\frac{\Phi}{2}=\frac{\pi}{3}$
$\therefore \phi=\frac{2 \pi}{3}=\left(\frac{2 \pi}{\lambda}\right) . \Delta x$
Where $\Delta x=d \sin \theta$
Substituting in Eq. (i) we get,
$\sin \theta=\frac{\lambda}{3 d}$
Or $\theta=\sin ^{-1}\left(\frac{\lambda}{3 d}\right)$
(a)
$\frac{E_{0}}{B_{0}}=c$. also $k=\frac{2 \pi}{\lambda}$ and $\omega=2 \pi v$
These relation gives $E_{0} k=B_{0} \omega$
(a)

For diffraction to be observed, size of aperture must be of the same order as wavelength of light
(b)

Infrasonic waves are mechanical waves
(a)
$\beta=\frac{\lambda D}{d} \Rightarrow \beta \propto \lambda$
(d)

When two waves of same frenquency, same wavelength and same velocity moves in the same direction. Their superposition results in the interference. The two beams should be monochromatic.
(d)

Let nth minima of 400 nm coincides with m th minima of 560 nm then
$(2 n-1) 400=(2 m-1) 560 \Rightarrow \frac{2 n-1}{2 m-1}=\frac{7}{5}=\frac{14}{10}=\frac{21}{15}$
i.e., 4th minima of 400 nm coincides with 3 rd minima of 560 nm

The location of this minima is
$=\frac{7(1000)\left(400 \times 10^{-6}\right)}{2 \times 0.1}=14 \mathrm{~mm}$
Next, 11th minima of 400 nm will coincide with 8th minima of 560 nm Location of this minima is
$=\frac{21(1000)\left(400 \times 10^{-6}\right)}{2 \times 0.1}=42 \mathrm{~mm}$
\therefore Required distance $=28 \mathrm{~mm}$
(b)
$\frac{I_{\text {max }}}{I_{\text {min }}}=\frac{4}{1} \frac{\left(a_{1}+a_{2}\right)^{2}}{\left(a_{1}-a_{2}\right)^{2}}$
Or $\quad \frac{a_{1}+a_{2}}{a_{1}-a_{2}}=\frac{2}{1}$
Or $\quad a_{1}+a_{2}=2 a_{1}-2 a_{2}$
Or $a_{1}=3 a_{2}$

$$
\begin{array}{ll}
\therefore & \frac{I_{1}}{I_{2}}=\frac{a_{1}^{2}}{a_{2}^{2}}=\frac{\left(3 a_{2}\right)^{2}}{a_{2}^{2}}=\frac{9}{1} \\
\therefore & \quad \frac{a_{1}}{a_{2}}=\frac{3}{1}
\end{array}
$$

(c)

Wave theory of light is given by Huygen
(c)

Interference fringes are bands on screen $X Y$ running parallel to the length of slits.
Therefore, the locus of fringes is represented correctly by $W_{3} W_{4}$.
(b)

The angular distance (θ) is given by

$$
\begin{aligned}
& \theta=\frac{\lambda}{d} \\
& \theta=2^{\circ}=\frac{\pi}{180} \times 2, \lambda=6980 \AA \\
& =6980 \times 10^{-10} \mathrm{~m} \\
& \Rightarrow d=\frac{\lambda}{\theta}=\frac{6980 \times 10^{-10} \times 180}{3.14 \times 2} \\
& =1.89 \times 10^{-5} \mathrm{~mm} \\
& \Rightarrow d=2 \times 10^{-5} \mathrm{~mm}
\end{aligned}
$$

(a)
$\beta=\frac{\lambda D}{d} \Rightarrow\left(0.06 \times 10^{-2}\right)=\frac{\lambda \times 1}{1 \times 10^{-3}} \Rightarrow \lambda=6000 \AA$
(c)

Given, $I_{1}=I$ and $I_{2}=9 I$
Maximum intensity $=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}$

$$
=(\sqrt{I}+\sqrt{9 I})^{2}=16 I
$$

Minimum intensity
$=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}=(\sqrt{I}-\sqrt{9 I})^{2}=4 I$
(a)

The diffraction pattern of light waves of wavelength (λ) diffracted by a single, long narrow slit of width is shown. For first minimum.

$$
\begin{aligned}
& e \sin \theta=\lambda \\
& \sin \theta=\frac{\lambda}{\mathrm{e}}
\end{aligned}
$$

When e is decreased for same wavelength, $\sin \theta$ increases, hence θ increases. Thus, width of central maxima will increase.
(d)

Intensity of EM wave is given by
$I=\frac{P}{4 \pi R^{2}}=v_{a v .} c=\frac{1}{2} \varepsilon_{0} E_{0}^{2} \times c$
$\Rightarrow E_{0}=\sqrt{\frac{P}{2 \pi R^{2} \varepsilon_{0} c}}$
$=\sqrt{\frac{800}{2 \times 3.14 \times(4)^{2} \times 8.85 \times 10^{-12} \times 3 \times 10^{8}}}$
$=54.77 \frac{\mathrm{~V}}{\mathrm{~m}}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	D	A	C	A	A	B	A	D	D	B		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	C	B	B	A	C	D	A	A	D		

