CLASS : XITh
Solutions

1
(b)
$\mathrm{KE}=\frac{1}{2} m v^{2}$
Given, $v_{2}=\left(v_{1}+2\right)$
$\frac{K_{1}}{K_{2}}=\left(\frac{v_{1}}{v_{2}}\right)^{2}$
$\frac{1}{2}=\frac{v_{1}^{2}}{\left(v_{1}+2\right)^{2}} \quad\left(\therefore k_{2}=2 k_{1}\right)$
$v_{1}^{2}+4 v_{1}+4=2 v_{1}^{2}$
$v_{1}^{2}-4 v_{1}-4=0$
$v_{1}=\frac{4 \pm \sqrt{16+16}}{2}$
$v_{1}=\frac{4+\sqrt{32}}{2}=2(\sqrt{2}+1) \mathrm{ms}^{-1}$
2
(c)
$E=\frac{1}{2} m g^{2} t^{2}$
$\frac{E_{1}}{E_{2}}=\frac{\frac{1}{2} \mathrm{mg}^{2} \times 3^{2}}{\frac{1}{2} m \mathrm{~g}^{2}\left(6^{2}-3^{2}\right)}=\frac{9}{9 \times 3}=\frac{1}{3}$
3
(d)

Initially mass 10 gm moves with velocity $100 \mathrm{~cm} / \mathrm{s}$
\therefore Initial momentum $=10 \times 100=1000 \frac{\mathrm{gm} \times \mathrm{cm}}{\mathrm{sec}}$
After collision system moves with velocity $v_{\text {sys }}$ then
Final momentum $=(10+10) \times v_{\text {sys. }}$
By applying in conservation of momentum
$1000=20 \times v_{\text {sys }}$.
$\Rightarrow v_{\text {sys. }}=50 \mathrm{~cm} / \mathrm{s}$
If system rises upto height h then
$\mathrm{h}=\frac{v_{\text {sys. }}^{2}}{2 g}=\frac{50 \times 50}{2 \times 1000}=\frac{2.5}{2}=1.25 \mathrm{~cm}$
(b)

Work done $W=$ area under $F-S$ graph
$=$ area of trapezium $A B C D+$ area of trapezium CEFD
$=\frac{1}{2} \times(10+15) \times 10+\frac{1}{2} \times(10+20) \times 5$
$=125+75=200 \mathrm{~J}$
(d)
$s=10 \mathrm{~m}, F=5 \mathrm{~N}, W=25 \mathrm{~J}, \theta=$?
$\cos \theta=\frac{W}{F s}=\frac{25}{5 \times 10}=\frac{1}{2} \quad \therefore \theta=60^{\circ}$

8
8
(d)

Work done in raising water $=\mathrm{mgh}$
or $W=($ volume \times density $) g h$
$=(9 \times 1000) \times 10 \times 10$
Or $W=9 \times 10^{5} \mathrm{~J}$
$\therefore \quad$ Useful power $=\frac{\text { work }}{\mathrm{t}}=\frac{9 \times 10^{5}}{5 \times 60}=3 \mathrm{~kW}$
Hence, efficiency $=\frac{\text { useful power }}{\text { consuming power }}$
$=\frac{3}{10}=30 \%$
(c)

Kinetic energy at highest point
$(\mathrm{KE})_{H}=\frac{1}{2} m v^{2} \cos 2 \theta$
$=K \cos ^{2} \theta$
$=K\left(\cos 60^{\circ}\right)^{2}$
$=\frac{K}{4}$
(b)

Loss in kinetic energy
$=\frac{1}{2} \frac{m_{1} m_{2}\left(u_{1}-u_{2}\right)^{2}}{\left(m_{1}+m_{2}\right)}$

$$
\begin{aligned}
& =\frac{1}{2} \frac{m \cdot m\left(u_{1}-u_{2}\right)^{2}}{(m+m)} \\
& =\frac{m}{4}\left(u_{1}-u_{2}\right)^{2}
\end{aligned}
$$

(c)

Change in momentum = Impulse
= Area under force-time graph
$\therefore m v=$ Area of trapezium
$\Rightarrow m v=\frac{1}{2}\left(T+\frac{T}{2}\right) F_{0} \Rightarrow m v=\frac{3 T}{4} F_{0} \Rightarrow F_{0}=\frac{4 m u}{3 T}$
$P_{\text {in }}=\left(\frac{m}{t}\right) \times g \times h \Rightarrow P_{\text {in }}=15 \times 10 \times 60$
$\Rightarrow P_{\text {in }}=9000 \mathrm{~W} \Rightarrow P_{\text {in }}=9 \mathrm{~kW}$
As efficiency of turbine is 90% therefore power generated $=90 \%$ of 9 kW
$P_{\text {out }}=9 \times \frac{90}{100} \Rightarrow P_{\text {out }}=8.1 \mathrm{~kW}$

20
(a)

In an inelastic collision, only momentum is conserved whereas in elastic collision both momentum and kinetic energy are conserved
(c)

When the ball is released from the top of tower then ratio of distances covered by the ball in first, second and third second
$h_{l}: h_{I I}: h_{I I I}=1: 2: 3$ [Because $\mathrm{h}_{n} \propto\left(2_{n}-1\right)$]
\therefore Ratio of work done
$m g \mathrm{hI}^{\prime} m_{\mathrm{h}}^{\mathrm{h} I}: \mathrm{mgh}_{I I I}=1: 3: 5$
(a)
$\overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{F}}=(x \hat{\mathbf{i}}+y \hat{\mathbf{j}}) \cdot(d x \hat{\mathbf{i}}+d y \hat{\mathbf{j}})$
$=x d x+y d y$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	B	C	D	B	D	D	C	B	C	B	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	C	A	C	B	C	B	C	A	C	A	

