CLASS : XITh
SUBJECT : PHYSICS
DATE:
DPP NO. :6

Topic :- WORK ENERGY AND POWER

1. If momentum is increased by 20%, then kinetic energy increases by
a) 48%
b) 44%
c) 40%
d) 36%
2. Two spherical bodies of the same mass M are moving with velocities v_{1} and v_{2}. These collide perfectly inelastically , then the loss in kinetic energy is
a) $\frac{1}{2} M\left(v_{1}-v_{2}\right)$
b) $\frac{1}{2} M\left(v_{1}^{2}-v_{2}^{2}\right)$
c) $\frac{1}{4} M\left(v_{1}-v_{2}\right)^{2}$
d) $2 M\left(v_{1}^{2}-v_{2}^{2}\right)$
3. A person holds a bucket of weight 60 N . He walks 7 m along the horizontal path and then climbs up a vertical distance of 5 m . The work done by the man is
a) 300 J
b) 420 J
c) 720 J
d) None of these
4. A coolie 1.5 m tall raises a load of 80 kg in 2 s from the ground to his head and then walks a distance of 40 m in another 2 s . The power developed by the coolie is $\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right.$]
a) 0.2 kW
b) 0.4 kW
c) 0.6 kW
d) 0.8 kW
5. A boy of mass 1 kg moves from point $A(2 m, 3 m, 4 m)$ to $B(3 m, 2 m, 5 m)$. During motion of body, a force $\overrightarrow{\mathbf{F}}=(2 \mathrm{~N}) \hat{\mathbf{i}}-(4 \mathrm{~N}) \hat{\mathbf{j}}$ acts on it. The work done by the force on the particle displacement is
a) $(2 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}) \mathrm{J}$
b) 2 J
c) -2 J
d) None of these
6. A body of mass maccelerates uniformly from rest to v_{1} is time t_{1}. The instantaneous power delivered to the body as a function of time t is
a) $\frac{m v_{1} t}{t_{1}}$
b) $\frac{m v_{1}^{2} t}{t_{1}^{2}}$
c) $\frac{m v_{1} t^{2}}{t_{1}}$
d) $\frac{m v_{1}^{2} t}{t_{1}}$
7. The bob A simple pendulum is released when the string makes an angle of 45° with the vertical. It hits another bob B of the same material and same mass kept at rest on the table. If the collision is elastic

a) Both A and B rise to the same height
b) Both A and B come to rest at B
c) Both A and B move with the same velocity of A
d) A comes to rest and B moves with the velocity of A
8. An engine pumps water through a hose pipe. Water passes through the pipe and leaves it with a velocity of $2 \mathrm{~m} / \mathrm{s}$. The mass per unit length of water in the pipe is $100 \mathrm{~kg} / \mathrm{m}$. What is the power of the engine
a) 800 W
b) 400 W
c) 200 W
d) 100 W
9. A ball of weight 0.1 kg coming with speed $30 \mathrm{~m} / \mathrm{s}$ strikes with a bat and returns in opposite direction with speed $40 \mathrm{~m} / \mathrm{s}$, then the impulse is (Taking final velocity as positive)
a) $-0.1 \times(40)-0.1 \times(30)$
b) $0.1 \times(40)-0.1 \times(-30)$
c) $0.1 \times(40)+0.1 \times(-30)$
d) $0.1 \times(40)-0.1 \times(20)$
10. If the kinetic energy of a body is increased 2 times , its momentum will
a) Half
b) Remain unchanged
c) Be doubled
d) increase $\sqrt{2}$ times
11. A vertical spring with force constant K is fixed on a table. A ball of mass m at a height h above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance d. The net work done in the process is

a) $m g+(\mathrm{h}+d)+\frac{1}{2} K d^{2}$
b) $m g(\mathrm{~h}+d)-\frac{1}{2} K d^{2}$
c) $m g(\mathrm{~h}-d)-\frac{1}{2} K d^{2}$
d) $m g(\mathrm{~h}-d)+\frac{1}{2} K d^{2}$
12. A wire of length L suspended vertically from a rigid support is made to suffer extension l in its length by applying a force F. The work is
a) $\frac{F l}{2}$
b) Fl
c) 2 Fl
d) $F l$
13. An ideal spring with spring constant k is hung from the ceiling and a block of mass M is attached to its lower end. The mass is released with the spring initially unstretched. Then the maximum extension in the spring is
a) $\frac{4 M \mathrm{~g}}{k}$
b) $\frac{2 M g}{k}$
c) $\frac{\mathrm{Mg}}{k}$
d) $\frac{\mathrm{Mg}}{2 k}$
14. A car manufacturer claims that his car can be accelerated from rest to a velocity of $10 \mathrm{~ms}^{-1}$ in 5 s. If the total mass of the car and its occupants is 1000 kg , then the average horse power developed by the engine is
a) $\frac{10^{3}}{746}$
b) $\frac{10^{4}}{746}$
c) $\frac{10^{5}}{746}$
d) 8
15. A particle is acted upon by a force F which varies with position x as shown in figure. If the particle at $x=0$ has kinetic energy of 25 J , then the kinetic energy of the particle at $x=16 \mathrm{~m}$ is

a) 45 J
b) 30 J
c) 70 J
d) 135 J
16. A ball moving with velocity $2 \mathrm{~m} / \mathrm{s}$. collides head on with another stationary ball of double the mass. If the coefficient of restitution is 0.5 , then their velocities (in m / s) after collision will be
a) 0,2
b) 0,1
c) 1,1
d) $1,0.5$
17. If the water falls from a dam into a turbine wheel 19.6 m below, then the velocity of water at the turbine is $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
a) $9.8 \mathrm{~m} / \mathrm{s}$
b) $19.6 \mathrm{~m} / \mathrm{s}$
c) $39.2 \mathrm{~m} / \mathrm{s}$
d) $98.0 \mathrm{~m} / \mathrm{s}$
18. The potential energy function for the force between two atoms in a diatomic molecule is approximately given by $\mathrm{U}(x) \frac{a}{x^{12}}-\frac{b}{x^{6}}$, where a and b are constants and x is the distance between the atoms, If the dissociation energy of the molecule is $D=\left[U(x=\infty)-U_{\text {atequilibrium }}\right], D$ is
a) $\frac{b^{2}}{2 a}$
b) $\frac{b^{2}}{12 a}$
c) $\frac{b^{2}}{4 a}$
d) $\frac{b^{2}}{6 a}$
19. A body at rest breaks into two pieces with unequal mass
a) Both of them have equal speeds
b) Both of them move along a same line with unequal speeds
c) Sum of their momentum is non zero
d) They move along different lines with different speeds
20. A body of mass 2 kg moving with a velocity of $3 \mathrm{~ms}^{-1}$ collides head on with a body of mass 1 kg moving in opposite direction with a velocity of $4 \mathrm{~ms}^{-1}$.After collision two bodies stick together and move with a common velocity which in $m s^{-1}$ is equal to
a) $\frac{1}{4}$
b) $\frac{1}{3}$
c) $\frac{2}{3}$
d) $\frac{3}{4}$

