1
(b)

Kinetic energy, $K=\frac{P^{2}}{2 m}$
Where P is the momentum and m is the mass. When momentum is increased by 20%, then
$\rho^{\prime}=P+\frac{20}{100} P=1.2 P$
$\therefore K^{\prime}=\frac{(1.2 P)^{2}}{2 m}=\frac{1.44 P^{2}}{2 m}=1.44 \mathrm{~K}$
$K^{\prime}=K+0.44 K \Rightarrow \frac{K^{\prime}-K}{K}=0.44$
Percentage increase in kinetic energy is
$\frac{K^{\prime}-K}{K} \times 100=0.44 \times 100=44 \%$

2

3
(c)
$P=\frac{m \mathrm{gh}_{\mathrm{h}}}{t}=\frac{80 \times 10 \times 1.5}{2}$ $=600 \mathrm{~W}=0.6 \mathrm{~kW}$
(c)

The displacement of body is

$$
\begin{aligned}
& \overrightarrow{\mathbf{A B}}=\overrightarrow{\mathbf{r}}_{B}-\overrightarrow{\mathbf{r}}_{A} \\
& =(3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})-(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}) \\
& =\hat{\mathbf{i}}+\hat{\mathbf{j}}+\overrightarrow{\mathbf{k}} \\
& \therefore W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{B}}=(2 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}) \cdot(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}) \\
& =2-4=-2 \mathrm{~J}
\end{aligned}
$$

(b)

Let the constant acceleration of body of mass m is a,
From equation of motion
$v_{1}=0+a t_{1}$
Or $\quad a=\frac{v_{1}}{t_{1}}$
At an instant t , the velocity v of the body
$v=0+a t$
$v=\frac{v_{1}}{t_{1}} t$
Therefore, instantaneous power
$p=F v=m a v$
$=m\left(\frac{v_{1}}{t_{1}}\right) \times\left(\frac{v_{1}}{t_{1}} \cdot t\right) \quad$ [From Eqs.(i)and (ii)]
$=\frac{m v_{1}^{2} t}{t_{1}^{2}}$
(d)

Due to the same mass of A and B as well as due to elastic collision velocities of spheres get interchanged after the colision
(a)

Power $=F v=v\left(\frac{m}{t}\right) v=v^{2}(\rho A v)$
$=\rho A v^{3}=(100)(2)^{3}=800 \mathrm{~W}$
(b)

Impulse $=$ change in momentum
$m v_{2}-m v_{1}=0.1 \times 40-0.1 \times(-30)$
(d)

Kinetic energy of particle,$k=\frac{p_{1}^{2}}{2 m}$
$p_{1}^{2}=2 m k^{\prime}$
When kinetic energy $=2 \mathrm{k}$
$p_{2}^{2}=2 m \times 2 k, p_{2}^{2}=2 p_{1}^{2}, p_{2}=\sqrt{2 p_{1}}$
(b)

Gravitational potential energy of ball gets converted into elastic potential energy of the
spring $m g(\mathrm{~h}+d)=\frac{1}{2} K d^{2}$
Net work done $=m g(\mathrm{~h}+d)-\frac{1}{2} K d^{2}=0$
(a)
$d W=F d l$
$W=\int_{0}^{l} F d l \quad Y=\frac{F L}{d l}$
or $W=\int_{0}^{l} \frac{Y a l}{L} d l$ or $F=\frac{Y a l}{L}$
or $W=\frac{Y a}{L} \int_{0}^{l} d l$ or $W=\frac{Y a}{L}\left(\frac{l^{2}}{2}\right)$
or $W=\frac{1 Y a l}{2 L} l=\frac{1}{2} F l$
(b)

Let x be the maximum extension of the spring, figure. From conservation of mechanical energy; decreases in gravitational potential energy = increase in elastic potential energy

$\operatorname{Mg} x=\frac{1}{2} k x^{2}$
$x=\frac{2 M g}{k}$
(b)
$a=\frac{10-0}{5} \mathrm{~ms}^{-2}=2 \mathrm{~ms}^{-2}$;
$F=m a$ or $F=1000 \times 2 \mathrm{~N}=2000 \mathrm{~N}$
Average velocity $=\frac{0+10}{2} \mathrm{~ms}^{-1}=5 \mathrm{~ms}^{-1}$
Average power $=2000 \times 5 \mathrm{~W}=10^{4} \mathrm{~W}$
Required horse power is $\frac{10^{4}}{746}$
(a)

Work done=area between the graph force displacement curve and displacement
$W=\frac{1}{2} \times 6 \times 10-5 \times 4+5 \times 4-5 \times 2$
$W=20 J$
According to work energy theorem
$\Delta=K_{E}=W$
$K_{E f}=W+\Delta K$
$=20+25$
$=45 \mathrm{~J}$
(b)

By conservation of linear momentum
$2 m=m v_{1}+2 m v_{2} \Rightarrow v_{1}+2 v_{2}=2$

By definition of $e, e=\frac{1}{2}=\frac{v_{2}-v_{1}}{2-0}$
$\Rightarrow v_{2}-v_{1}=1 \Rightarrow v_{1}=0$ and $v_{2}=1 \mathrm{~ms}^{-1}$
(b)

Potential energy of water $=$ kinetic energy at turbine
$m g \mathrm{~h}=\frac{1}{2} m v^{2} \Rightarrow v=\sqrt{2 g \mathrm{~h}}=\sqrt{2 \times 9.8 \times 19.6}=19.6 \mathrm{~m} / \mathrm{s}$
(c)
$\mathrm{U}(x)=\frac{a}{x^{12}}-\frac{b}{x^{6}}$
$U(x=\infty)=0$
As $\quad F=-\frac{d U}{d x}=-\left[\frac{12 a}{x^{13}}+\frac{6 b}{x^{7}}\right]$
At equilibrium, $F=0$
$X^{6}=\frac{2 a}{b}$
$\therefore U_{\text {at equilibrium }}=\frac{a}{\left(\frac{2 a}{b}\right)^{2}}-\frac{b}{\left(\frac{2 a}{b}\right)}=-\frac{b^{2}}{4 a}$
$\therefore D=\left[U(x-\infty)-U_{\text {at equilibrium }}\right]=\frac{b^{2}}{4 a}$
(c)
$m_{1} v_{1}-m_{2} v_{2}=\left(m_{1}+m_{2}\right) v$
$\therefore 2 \times 3-1 \times 4=(2+1) v$
Or $v=\frac{2}{3} m s^{-1}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	B	C	A	C	C	B	D	A	B	D		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	B	A	B	B	A	B	B	C	B	C		

