CLASS : XITH
SUBJECT : PHYSICS
DATE:
DPP NO. :5

Topic :- WORK ENERGY AND POWER

1. A body is moved along a straight line by machine delivering a constant power. The distance moved by the body in time t is proportional to
a) $t^{3 / 4}$
b) $t^{3 / 2}$
c) $t^{1 / 4}$
d) $t^{1 / 2}$
2. A 2.0 kg block is dropped from a height of 40 cm onto a spring of spring constant $k=1960$ Nm^{-1}. Find the maximum distance the spring is compressed
a) 0.080 m
b) 0.20 m
c) 0.40 m
d) 0.10 m
3. A body of mass m is rest. Another body of same mass moving with velocity v makes head on elastic collision with the first body. After collision the first body starts to moves with velocity
a) v
b) Remain at rest
c) 2 v
d) Not predictable
4. A 0.5 kg ball is thrown up with an initial speed $14 \mathrm{~ms}^{-1}$ and reaches a maximum height of 8 m . How much energy is dissipate by air drag acting on the ball during the ascent?
a) 19.6 J
b) 4.9 J
c) 10 J
d) 9.8 J
5. The height of the dam, in a hydroelectric power station is 10 m . In order to generate 1 MW of electric power, the mass of water (in kg / s) that must fall per second on the blades of the turbines
a) 10^{6}
b) 10^{5}
c) 10^{3}
d) 10^{4}
6. The potential energy of a particle of mass 5 kg moving in the $x-y$ plane is given by $U=(-7 x$ $+24 y) \mathrm{J}, x$ and y being in metre. If the particle starts from rest from origin then speed of particle at $t=2 \mathrm{~s}$ is
a) $5 \mathrm{~ms}^{-1}$
b)
$01 \mathrm{~ms}^{-1}$
c)
$17.5 \mathrm{~ms}^{-1}$
d) $\quad 10 \mathrm{~ms}^{-1}$
7. A rod AB of mass 10 kg and length 4 m rests on a horizontal floor with end A fixed so as to rotate it in vertical plane about perpendicular axis passing through A. If the work done on the rod is 100 J , the height to which the end B be raised vertically above the floor is
a) 1.5 m
b) 2.0 m
c) 1.0 m
d) 2.5 m
8. In the non-relativistic regime, if the momentum, is increased by 100%, the percentage increase in kinetic energy is
a) 100
b) 200
c) 300
d) 400
9. A shell of mass 20 kg at rest explodes into two fragments whose masses are in the ratio $2: 3$. The smaller fragment moves with a velocity of $6 \mathrm{~ms}^{-1}$. The kinetic energy of the larger fragment is
a) 96 J
b) 216 J
c) 144 J
d) 360 J
10. An α-particle of mass msuffers one dimensional elastic collision with a nucleus of unknown mass. After the collision the α-particle is scattered directly backward losing 75% of its kinetic energy .then the mass of the nucleus is
a) m
b) 2 m
c) 3 m
d) $\frac{3}{2} m$
11. A bomb of mass 30 kg at rest explodes into two pieces of masses 18 kg and 12 kg .The velocity of 18 kg mass is $6 \mathrm{~ms}^{-1}$. The kinetic energy of the other mass is
a) 256 J
b) 486 J
c) 524 J
d) 324 J
12. When a 1.0 kg mass hangs attached to a spring of length 50 cm , the spring stretches by 2 cm . The mass is pulled down until the length of the spring becomes 60 cm . What is the amount of elastic energy stored in the spring in this condition, if $g=10 \mathrm{~m} / \mathrm{s}^{2}$
a) 1.5 joule
b) 2.0 joule
c) 2.5 joule
d) 3.0 joule
13. A man pushes a wall and falls to displace it. He does
a) Negative work
b) Positive but not maximum work
c) No work at all
d) Maximum work
14. A spherical ball of mass 20 kg is stationary at the top of a hill of height 100 m . It rolls down a smooth surface to the ground, then climbs up another hill of height 30 m and height of 20 m above the ground. The velocity attained by the ball is
a) $40 \mathrm{~ms}^{-1}$
b) $20 \mathrm{~ms}^{-1}$
c) $10 \mathrm{~ms}^{-1}$
d) $10 \sqrt{30} \mathrm{~ms}^{-1}$
15. The potential energy of a certain spring when stretched through a distance s is 10 J . The amount of work (in joule) that must be done on this spring to stretch it through additional distance s will be
a) 30
b) 40
c) 10
d) 20
16. A body of mass 3 kg acted upon by a constant force is displaced by s metre, given by relation $s=\frac{1}{3} t^{2}$, where t is in second. Work done by the force in 2 s
a) $\frac{8}{3}$ J
b) $\frac{19}{5} \mathrm{~J}$
c) $\frac{5}{19}$ J
d) $\frac{3}{8} \mathrm{~J}$
17. The force constant of a wire is k and that of another wire is $2 k$. When both the wires are stretched through same distance, then the work done
a) $W_{2}=2 W_{1}^{2}$
b) $W_{2}=2 W_{1}$
c) $W_{2}=W_{1}$
d) $W_{2}=0.5 W_{1}$
18. Figure shows the $F-x$ graph. Where F is the force applied and x is the distance covered

By the body along a straight line path. Given that F is in newton and x in metre, what is the work done?
a) 10 J
b) 20 J
c) 30 J
d) 40 J
19. A particle is released from a height h, At a certain height; its KE is two times its potential energy. Height and speed of the particle at that instant are
a) $\frac{\mathrm{h}}{3}, \sqrt{\frac{2 g_{\mathrm{h}}}{3}}$
b) $\frac{\mathrm{h}}{3}, 2 \sqrt{\frac{g_{\mathrm{h}}}{3}}$
c) $\frac{2 h}{3} \sqrt{\frac{2 g_{\mathrm{h}}}{3}}$
d) $\frac{\mathrm{h}}{3}, \sqrt{2 g \mathrm{~h}}$
20. A particle is placed at the origin and a force $F=k x$ is acting on it (where k is positive constant). If $U(0)=0$, the graph of $U(x)$ versus x will be (where U is the potential energy function)
a)

b)

c)

d)

