CLASS : XITH
Solutions
SUBJECT : PHYSICS
DPP NO.: 5

Topic :- WORK ENERGY AND POWER

1
(b)
$P=$ constant
$\Rightarrow F v=P[\because P=$ force \times velocity $]$
$\Rightarrow M a \times v=P \quad[\because F=M a]$
$\Rightarrow v a=\frac{P}{M}$
$\Rightarrow v \times \frac{v d v}{d s}=\frac{P}{M} \quad\left[\because a=\frac{v d v}{d s}\right]$
$\Rightarrow \int_{0}^{v} v^{2} d v=\int_{0}^{s} \frac{P}{M} d s$
[Assuming at $t=0$ it starts from rest, $i e$, from $s=0$]
$\Rightarrow \frac{v^{3}}{3}=\frac{P}{M} s$
$\Rightarrow v=\left(\frac{3 P}{M}\right)^{1 / 3} \times s^{1 / 3}$
$\Rightarrow \frac{d s}{d t}=k s^{1 / 3}\left[k=\left(\frac{3 P}{M}\right)^{1 / 3}\right]$
$\Rightarrow \int_{0}^{s} \frac{d s}{s^{1 / 3}}=\int_{0}^{t} k d t$
$\Rightarrow \frac{s^{2 / 3}}{2 / 3}=k t$
$\therefore s=\left(\frac{2}{3} k\right)^{3 / 2} \times t^{3 / 2}$
$\Rightarrow s \propto t^{3 / 2}$
2
(d)

Let m be the mass of the block, h the height from which it is dropped, and x the compression o the spring. Since, energy is conserved, so
Final gravitational potential energy
$=$ final spring potential energy
or $m g(\mathrm{~h}+x)=\frac{1}{2} k x^{2}$
or $m g(\mathrm{~h}+x)+\frac{1}{2} k x^{2}=0$
or $k x^{2}-2 m g(\mathrm{~h}+x)=0$
$k x^{2}-2 m g x-2 m \mathrm{gh}=0$
This is a quadratic equation for x. Its solution is
$x=\frac{m \mathrm{~g} \pm \sqrt{(m \mathrm{~g})^{2}+2 m \mathrm{gh} k}}{k}$
Now, $m \mathrm{~g}=2 \times 9.8=19.6 \mathrm{~N}$
and $\mathrm{h} k=0.40 \times 1960=784 \mathrm{~N}$
$\therefore \quad x=\frac{19.6 \pm \sqrt{(19.6)^{2}+2(19.6)(784)}}{1960}$
$=0.10 \mathrm{~m}$ or -0.080 m
Since, x must be positive (a compression) we accept the positive solution and reject the negative solution. Hence, $x=0.10 \mathrm{~m}$
(a)

When two bodies of same mass makes head on elastic collision, and then they interchange their velocities.
So, after collision first body starts to move with velocity v .
(d)

Energy supplied $=\frac{1}{2} m v^{2}=\frac{1}{2}(0.5) 14^{2}=49 \mathrm{~J}$
Energy stored $=m \mathrm{gh}=0.5 \times 9.8 \times 8=39.2 \mathrm{~J}$
\therefore Energy dissipated $=49-39.2=9.8 \mathrm{~J}$
(d)
$P=\frac{m g_{h}}{t}$
$\frac{M}{t}=$ mass of water fall per second
$=\frac{P}{\mathrm{~g}_{\mathrm{h}}}=\frac{1 \times 10^{6}}{10 \times 10}=10^{4} \mathrm{~kg} \mathrm{~s}^{-1}$
(d)
$F=-\frac{\partial U}{\partial x} \hat{\mathbf{i}}-\frac{\partial U}{\partial y} \hat{\mathbf{j}}=7 \hat{\mathbf{i}}-24 \hat{\mathbf{j}}$
$\therefore \quad a_{x}=\frac{F_{x}}{m}=\frac{7}{5}=1.4 \mathrm{~ms}^{-2}$ along positive x-axis
$a_{y}=\frac{F_{y}}{m}=-\frac{24}{5}$
$=4.8 \mathrm{~ms}^{-2}$ along negative y-axis
$\therefore v_{x}=a_{x} t=1.4 \times 2$
$=2.8 \mathrm{~ms}^{-2}$
and $v_{y}=4.8 \times 2=9.6 \mathrm{~ms}^{-1}$
$\therefore v=\sqrt{v_{x}^{2}+v_{y}^{2}}=10 \mathrm{~ms}^{-1}$
(b)

Work done $=\frac{m g_{\mathrm{h}}}{2}$
$\therefore 100=\frac{10 \times 10 \times h}{2}$

Or $\mathrm{h}=2.0 \mathrm{~m}$
(c)
$E=\frac{p^{2}}{2 m}$ or $E \propto p^{2}$
or $\frac{E_{1}}{E_{2}}=\left(\frac{p_{1}}{p_{2}}\right)^{2}=\left(\frac{p_{1}}{2 p_{2}}\right)^{2}=\frac{1}{2}$ or $E_{2}=4 E_{1}$
So, increase is 300%
(a)

Mass of fragments are as $2: 3$
Total mass $=20 \mathrm{~kg}$
\therefore Larger fragment $=12 \mathrm{~kg}$
\therefore Smaller fragment $=8 \mathrm{~kg}$
Momentum is conserved
$\therefore 8 \times 6=12 \times v \Rightarrow v=4=$ velocity of larger fragment
\therefore Kinetic energy $=\frac{1}{2} m v^{2}=\frac{1}{2} \times 12 \times(4)^{2}=96 J$
(b)

The linear momentum of exploding part will remain conserved.
Applying conservation of linear momentum, We write, $m_{1} u_{1}=m_{2} u_{2}$

Here, $m_{1}=18 \mathrm{~kg}, m_{2}=12 \mathrm{~kg}$
$u_{1}=6 \mathrm{~ms}^{-1}, u_{2}=$?
$\therefore 18 \times 6=12 u_{2}$
$\Rightarrow u_{2}=\frac{18 \times 6}{12} 9 \mathrm{~ms}^{-1}$
Thus, kinetic energy of 12 kg mass
$k_{2}=\frac{1}{2} m_{2} u_{2}^{2}$
$=\frac{1}{2} \times 12 \times(9)^{2}$
$=6 \times 81$
$=486 \mathrm{~J}$
(b)

Force constant of a spring
$k=\frac{F}{x}=\frac{m g}{x}=\frac{1 \times 10}{2 \times 10^{-2}} \Rightarrow k=500 \mathrm{~N} / \mathrm{m}$
Increment in the length $=60-50=10 \mathrm{~cm}$
$U=\frac{1}{2} k x^{2}=\frac{1}{2} 500\left(10 \times 10^{-2}\right)^{2}=2.5 \mathrm{~J}$
(c)

There is no displacement
(a)

According to conservation of energy,

$$
m g H=\frac{1}{2} m v^{2}+m g \mathrm{~h} 2
$$

Or $\quad m g\left(H-\mathrm{h}_{2}\right)=\frac{1}{2} m v^{2}$
Or $v=\sqrt{2 g(100-20)}$
Or $v=\sqrt{2 \times 10 \times 80}=40 \mathrm{~ms}^{-1}$
(a)
$U=\frac{1}{2} k s^{2}=10 \mathrm{~J}$
$U^{\prime}=\frac{1}{2} k(s+s)^{2}=4\left(\frac{1}{2} k s^{2}\right)=40 \mathrm{~J}$
$W=U^{\prime}-U=40-10=30 \mathrm{~J}$
(a)
$s=\frac{1}{3} t^{2}$
$v=\frac{d s}{d t}=\frac{2}{3} t, a=\frac{d^{2} s}{d t^{2}}=\frac{2}{3}$
$F=m a=3 \times \frac{2}{3}=2 \mathrm{~N}$
$W=2 \times \frac{1}{3} t^{2}$
At $t=2 \mathrm{~s}$,
$W=2 \times \frac{1}{3} \times 2 \times 2=\frac{8}{3} \mathrm{~J}$

20
(b)
$W=\frac{1}{2} k x^{2}$
If both wires are stretched through same distance then $W \propto k$. As $k_{2}=2 k_{1}$ so $W_{2}=2 W_{1}$
(a)

Work done $=$ area under curve and displacement axis
$=1 \times 10-1 \times 10+1 \times 10=10 J$
(b)

Total mechanical energy= mgh
As, $\quad \frac{\mathrm{KE}}{\mathrm{PE}}=\frac{2}{1}$
$\mathrm{KE}=\frac{2}{3} \mathrm{mgh}$
and $\quad \mathrm{PE}=\frac{1}{3} m g \mathrm{~h}$
Height from the ground at this instant,
$\mathrm{h}^{\prime}=\frac{\mathrm{h}}{3}$ and speed of particle at this instant,
$v=\sqrt{2 g\left(\mathrm{~h}-\mathrm{h}^{\prime}\right)}$
$=\sqrt{2 g\left(\frac{2 h}{3}\right)}$
$=2 \sqrt{\frac{g_{\mathrm{h}}}{3}}$
(a)
$U=-\int F d x=-\int k x d x=-k \frac{x^{2}}{2}$
This is the equation of parabola symmetric to U axis in negative direction

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	B	D	A	D	D	D	B	C	A	C	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	B	B	C	A	A	A	B	A	B	A	

