CLASS : XITh
Solutions

Topic :- WORK ENERGY AND POWER

1
(d)

Given $F=2 x$,
Work done $W=\int F d x$
$\therefore W=\int_{x_{1}}^{x_{2}} 2 x d x=2\left[\frac{x^{2}}{2}\right]_{x 1}^{x 2}$
$=\left(x_{2}^{2}-x_{1}^{2}\right)$

3
(b)

Here $t=\sqrt{x}+3$
or $x=(t-3)^{2}=t^{2}-6 t+9$
$v=\frac{d x}{d t}=2 t-6$
At $t=0 \mathrm{~s}, v=2 \times 0-6=-6$
At $t=6 \mathrm{~s}, v=2 \times 6-6=+6$
Initial and final KE are same hence no work is done
$W=\frac{1}{2} m\left(v_{1}^{2}-v_{2}^{2}\right)=0$
(a)

Given, $\mathrm{m}=2 \mathrm{~kg}, \mathrm{v}=20 \mathrm{~ms}^{-1}, \theta=60^{\circ}$
Power(P)is given as
$P=F \cdot v=F v \cos \theta$
$P=m g v \cos \theta$
$\therefore \quad P=2 \times 20 \times 10 \times \cos 60^{\circ}$
$P=2 \times 20 \times 10 \times \frac{1}{2}$
$\Rightarrow P=200 \mathrm{~W}$
6 (d)
Kinetic energy of ball=potential energy of spring
i.e., $\quad B \frac{1}{2} m v^{2}=\frac{1}{2} k x^{2}$
$\therefore \quad 16 \times 10^{-3} \times v^{2}=\frac{90}{10^{-2}} \times\left(12 \times 10^{-2}\right)^{2}$
Or $v^{2}=\frac{90 \times 144 \times 10^{-4}}{10^{-2} \times 16 \times 10^{-3}}$
Or $v=90 \mathrm{~ms}^{-1}$
(b)
$\frac{1}{2} m v^{2}=\frac{1}{2} k x^{2} \Rightarrow x=v \sqrt{\frac{m}{k}}=10 \sqrt{\frac{0.1}{1000}}=0.1 \mathrm{~m}$
(d)
$P=v \cos \theta=m g v \cos 90^{\circ}=0$
(c)

Initial momentum of the system $=m v-m v=0$
As body sticks together \therefore final momentum $=2 m V$
By conservation of momentum $2 m V=0 \therefore V=0$
(a)
$P=\sqrt{2 m E} \therefore P \propto \sqrt{E}$ i.e., if kinetic energy becomes four times then new momentum will become twice

Let M be the mass of body moving with velocity v and m be mass of each broken part, velocity of one part which retraces back is v and that of second part is v^{\prime}.
Momentum before breaking=momentum after breaking
$M v=m(-v)+m v^{\prime}$
Or $v^{\prime}=\frac{M v+m v}{m}$
Since, $\mathrm{M}=2 \mathrm{~m}$,therefore
$v^{\prime}=\frac{(2 m+m) v}{m}=3 v$
(b)

Potential energy=Kinetic energy
Ie, $\quad m g h=\frac{1}{2} m v^{2}$
Or $\quad v=\sqrt{2 g h}$
If h_{1} and h_{2} are initial and final heights, then
$v_{1}=\sqrt{2 g \mathrm{~h}_{1}}, \quad v_{2}=\sqrt{2 g \mathrm{~h} 2}$
Loss in velocity
$\Delta v=v_{1}-v_{2}=\sqrt{2 g \mathrm{~h}_{1}}-\sqrt{2 g \mathrm{~h}_{2}}$
\therefore Fractional loss in velocity $=\frac{\Delta v}{v_{1}}$
$=\frac{\sqrt{2 g \mathrm{~h}_{1}}-\sqrt{2 g \mathrm{~h}_{2}}}{\sqrt{2 g \mathrm{~h}_{1}}}$
$\frac{\Delta^{v}}{v_{1}}=1-\sqrt{\frac{\mathrm{h}_{2}}{\mathrm{~h}_{1}}}$

$$
\begin{aligned}
& =1-\sqrt{\frac{1.8}{5}} \\
& =1-\sqrt{0.36}=1-0.6=0.4=\frac{2}{5}
\end{aligned}
$$

(d)

$W=\frac{M g L}{2 n^{2}}=\frac{M g L}{2(3)^{2}}=\frac{M g L}{18}[n=3$ Given $]$
(a)

In head on elastic collision velocity get interchanged (if masses of particle are equal) i.e. the last ball will move with the velocity of first ball i.e. $0.4 \mathrm{~m} / \mathrm{s}$
(d)

Area between curve and displacement axis
$=\frac{1}{2} \times(12+4) \times 10=80 \mathrm{~J}$
In this time body acquire kinetic energy $=\frac{1}{2} m v^{2}$
By the law of conservation of energy
$\frac{1}{2} m v^{2}=80 J$
$\Rightarrow \frac{1}{2} \times 0.1 \times v^{2}=80 \Rightarrow v^{2}=1600 \Rightarrow v=40 \mathrm{~m} / \mathrm{s}$
(a)
$\frac{1}{2} k S^{2}=10 J$ [Given in the problem]
$\frac{1}{2} k\left[(2 S)^{2}-(S)^{2}\right]=3 \times \frac{1}{2} k S^{2}=3 \times 10=30 J$
(a)

Given $\mathrm{a}=-k x$
$a=\frac{d v}{d t}=\frac{d v}{d x} \cdot \frac{d x}{d t}=-k x$
Or $\frac{v d v}{d x}=-k x$
Or $v d v=-k x d x$
Let for any displacement from 0 to x, the velocity changes from v_{0} to v.
$\Rightarrow \int_{v 0}^{v} v d v=-\int_{0}^{x} k x d x$
Or $\frac{v^{2}-v_{0}^{2}}{2}=-\frac{k x^{2}}{2}$
or $m\left(\frac{v^{2}-v_{0}^{2}}{2}\right)=-\frac{m k x^{2}}{2}$
Or $\Delta K \propto x^{2} \quad(\Delta K$ is loss in $K E)$
(d)

Here, $m_{1}=20 \mathrm{~kg}$,
$m_{2}=0.1 \mathrm{~kg}$,
$v_{1}=$ velocity of recoil of gun,
$v_{2}=$ velocity of bullet
As $m_{1} v_{1}=m_{2} v_{2}$
$v_{1}=\frac{m_{2}}{m_{1}} v_{2}=\frac{0.1}{20} v_{2}=\frac{v_{2}}{200}$
Recoil energy of gun $=\frac{1}{2} m_{1} v_{1}^{2}$
$=\frac{1}{2} \times 20\left(\frac{v_{2}}{200}\right)^{2}$
$804=\frac{10 v_{2}^{2}}{4 \times 10^{4}}=\frac{v_{2}^{2}}{4 \times 10^{3}}$
$v_{2}=\sqrt{804 \times 4 \times 10^{3}} \mathrm{~ms}^{-1}$
(c)

According to law of conservation of momentum
Momentum of neutron $=$ Momentum of combination
$\Rightarrow 1.67 \times 10^{-27} \times 10^{8}=\left(1.67 \times 10^{-27}+3.34 \times 10^{-27}\right) v$
$\therefore v=3.33 \times 10^{7} \mathrm{~m} / \mathrm{s}$
(d)

According to law of conservation of energy
$\frac{1}{2} m u^{2}=\frac{1}{2} m v^{2}+m g \mathrm{~h}$
$490=245+5 \times 9.8 \times h$
$\mathrm{h}=\frac{245}{49}=5 \mathrm{~m}$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	D	B	B	A	B	D	D	C	A	B	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	B	B	D	A	D	A	A	D	C	D	

