CLASS : XITh
Solutions

1
(b)

Kinetic energy of a body
$K=\frac{P^{2}}{2 M}$
Or $\quad K \propto P^{2}$
Or $\frac{p_{2}}{p_{1}}=\sqrt{\frac{K_{2}}{K_{1}}}=\sqrt{4}$
or $P_{2}=2 P_{1}$
(b)

Work $=$ Force \times Displacement
If force and displacement both are doubled then work would be four times
(d)

We can realize the situation as shown . Let at point C distance x from highest point A, the particle's kinetic energy is three times its potential energy.
Velocity at C,
$v^{2}=0+2 g x$
Or $v^{2}=2 g x$
Potential energy at $\mathrm{C},=m g(S-x)$

At Point C,
Kinetic energy= $3 \times$ potential energy
ie, $\quad \frac{1}{2} m \times 2 g x=3 \times m g(S-x)$
or $\quad x=3 S-3 x$
or $\quad 4 x=3 S$
or $\quad S=\frac{4}{3} x$
or $\quad x=\frac{3}{4} S$
Therefore, from Eq.(i)

$$
v^{2}=2 g \times \frac{3}{4} S
$$

Or $\quad v^{2}=\frac{3}{2} g S$ or $v=\sqrt{\frac{3}{2} g S}$
Height of the particle from the ground
$=S-x=S-\frac{3}{4} S=\frac{S}{4}$
(d)
$W=\int_{0}^{5} F d x=\int_{0}^{5}\left(7-2 x+3 x^{2}\right) d x=\left[7 x-x^{2}+x^{3}\right]_{0}^{5}$ $=35-25+125=135 \mathrm{~J}$
(b)

According to the graph the acceleration a varies linearly with the coordinate x. We may write $a=\alpha x$, where α is the slope of the graph.
From the graph
$\alpha=\frac{20}{8} m \mathrm{~g}_{0}=2.5 \mathrm{~s}^{-2}$
The force on the brick is in the positive x-direction and according to Newton's second law, its magnitude is given by
$F=\frac{a}{m}=\frac{\alpha}{m} x$
If x_{f} is the final coordinate, the work done by the force is

$$
\begin{aligned}
& W=\int_{0}^{x_{f}} F d x=\frac{a}{m} \int_{0}^{x_{f}} x d x \\
& =\frac{\alpha}{2 m} x_{f}^{2}=\frac{2.5}{2 \times 10} \times(8)^{2} \\
& =8 \mathrm{~J}
\end{aligned}
$$

(d)

The potential energy of a stretched spring is
$U=\frac{1}{2} k x^{2}$
Here, $\mathrm{k}=$ spring constant, $\mathrm{x}=$ elongation in spring.
But given that, the elongation is 2 cm .
So $U=\frac{1}{2} K(2)^{2}$

Or $U=\frac{1}{2} k \times 4$
If elongation is 10 cm then potential energy
$U^{\prime}=\frac{1}{2} k(10)^{2}$
Or $U^{\prime}=\frac{1}{2} k \times 100$
On dividing Eq. (ii) by Eq. (i), We have
$\frac{U^{\prime}}{U}=\frac{\frac{1}{2} k \times 100}{\frac{1}{2} k \times 4}$
Or $\frac{U^{\prime}}{U}=25 \Rightarrow U^{\prime}=25 U$
(b)

Initial momentum

$\vec{P}=m 45 \sqrt{2} \hat{i}+m 45 \sqrt{2} \hat{j}$
$\Rightarrow|\vec{P}|=m \times 90$
Final momentum $2 m \times V$
By conservation of momentum
$2 m \times V=m \times 90$

$$
\therefore V=45 \mathrm{~m} / \mathrm{s}
$$

(d)

Potential energy of the particle $U=k\left(1-e^{-x^{2}}\right)$
Force on particle $F=\frac{-d U}{d x}=-k\left[-e^{-x^{2}} \times(-2 x)\right]$
$F=-2 k x e^{-x^{2}}=-2 k x\left[1-x^{2}+\frac{x^{4}}{2!}-\ldots\right]$
For small displacement $F=-2 k x$
$\Rightarrow F \propto-x$ i.e. motion is simple harmonic motion
(a)

Given $F=-5 x-16 x^{3}=-\left(5+16 x^{2}\right) x=-k x$
where $k\left(=5+16 x^{2}\right)$ is force constant of spring ,Therefore , work done in stretching the spring from position x_{1} to position x_{2} is
$w=\frac{1}{2} k_{2} x_{2}^{2}-\frac{1}{2} k_{1} x_{1}^{2}$
We have, $x_{1}=0.1 \mathrm{~m}$ and $x_{2}=0.2 \mathrm{~m}$.
$\therefore W=\frac{1}{2}\left[5+16(0.2)^{2}\right](0.2)^{2}-\frac{1}{2}\left[5+16(0.1)^{2}\right](0.1)^{2}$
$=2.82 \times 4 \times 10^{-2}-2.58 \times 10^{-2}=8.7 \times 10^{-2} \mathrm{~J}$
(a)

In a perfectly elastic collision the relative velocity remains unchanged in magnitude but reserved in direction. Therefore, velocity of heavy body after collision is v.
(a)
$E=\frac{p^{2}}{2 m}$. If $P=$ constant then $E \propto \frac{1}{m}$
i.e., kinetic energy of heavier body will be less. As the mass of gun is more than bullet therefore it possess less kinetic energy
(b)

If ball falls from height h_{1} and bounces back up to height h_{2} then $e=\sqrt{\frac{\mathrm{h}_{2}}{\mathrm{~h}_{1}}}$

Similarly if the velocity of ball before and after collision are v_{1} and v_{2} respectively then $e=$
So $\frac{v_{2}}{v_{1}}=\sqrt{\frac{\mathrm{h} 2}{\mathrm{~h} 1}}=\sqrt{\frac{1.8}{5}}=\sqrt{\frac{v_{2}}{v_{1}}}=\frac{3}{5}$
i.e. fractional loss in velocity $=1-\frac{v_{2}}{v_{1}}=1-\frac{3}{5}=\frac{2}{5}$
(c)

Let $m=$ mass of boy, $M=$ Mass of man
$v=$ velocity of boy, $V=$ velocity of man
$\frac{1}{2} M V^{2}=\frac{1}{2}\left[\frac{1}{2} m v^{2}\right] \quad \ldots$ (i)
$\frac{1}{2} M(V+1)^{2}=1\left[\frac{1}{2} m v^{2}\right]$
Putting $m=\frac{M}{2}$ and solving $V=\frac{1}{\sqrt{2}-1}$
(a)

Since body moves with constant velocity, so. Net force on the body is zero.
Here, $N=m \mathrm{~m}, F=f$
$\therefore W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{s}}=f s \cos 180^{\prime \prime}$
$=f s=-10 \times 2=-20 \mathrm{~J}$
(a)

Given,

$$
\begin{aligned}
& m=100 \mathrm{~kg}, \quad \mathrm{~h}=10 \mathrm{~m}, \quad \mathrm{t}=5 \mathrm{~s} \\
& \mathrm{~g}=10 \mathrm{~ms}^{-2} \text { and } \eta=60 \% \\
& \text { Power }=\frac{\text { work } / \mathrm{time}}{\eta}=\frac{100}{60} \times \frac{\mathrm{mgh}}{\mathrm{t}} \\
& =\frac{100}{60} \times \frac{100 \times 10 \times 10}{5} \\
& =3.3 \times 10^{3} \mathrm{~W}
\end{aligned}
$$

$$
=3.3 \mathrm{~kW}
$$

(c)

Height of CG of mass $m_{1}=\frac{a}{2}$
Height of CG of mass $m_{2}=a+\frac{b}{2}$
\therefore Gravitational potential energy of system
$=m_{1} \mathrm{~g} \frac{a}{2}+m_{2} \mathrm{~g}\left(a+\frac{b}{2}\right)=\left[\frac{m_{1}}{2}+m_{2}\right] \mathrm{g} a+m_{2} \mathrm{~g} \frac{b}{2}$
$=\left[\left(\frac{m_{1}}{2}+m_{2}\right) a+m_{2} \frac{b}{2}\right] \mathrm{g}$
(a)

The ball rebounds with the same speed. So change in it's Kinetic energy will be zero i.e. work done by the ball on the wall is zero
(b)

To leave the block, it oscillates in vertical plane. If maximum extension in spring in extreme position of block is x_{1}, then
Work done by weight of the block
=Potential energy stored in spring
$m g x=\frac{1}{2} k x^{2}$
$\therefore x=2 \frac{m g}{k} 2 d \quad\left(\because d=\frac{m g}{k}\right)$
(a)

The weight of bucket when it has been pulled up a distance x is (5-0.2x).
Hence, the required work is
$W=\int_{x=20}^{x=0}-(5-0.2 x) \times 10 \times d x$
$=[50 x]_{x=0}^{x=20}-\left[2 \frac{x^{2}}{2}\right]_{x=0}^{x=20}$
$W=50 \times 20-(20)^{2}=600 \mathrm{~J}$
(b)
$\Delta U=m g \mathrm{~h}=0.2 \times 10 \times 200=400 J$
\therefore Gain in K.E. $=$ decrease in P.E. $=400 \mathrm{~J}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	B	B	D	D	B	D	B	D	A	A
Q.	11	12	13	14	15	16	17	18	19	20

A.	A	B	C	A	A	C	A	B	A	B

