CLASS : XIтн DATE :

DAILY PRACTICE PROBLEMS

Solutions

SUBJECT : PHYSICS DPP NO. : 8

Topic :-.UNITS AND MEASUREMENTS

1 **(d)**

Dimensional formula of magnetic flux

$$= [ML^2T^{-2}A^{-1}]$$

3 **(c)**

Area velocity is area covered per unit time.

4

(b) Unit of $\varepsilon_0 = C^2/N - m^2$: Unit of $K = Nm^2C^{-2}$

5

(c) Potential can be written a potential energy per unit charge,

 $V = \frac{W}{q} = \frac{U}{q}$

Hence, dimensions of potential are the same as that of work per unit charge.

6 **(a)**

(c)

[L/R] is a time constant so its unit is second

7

$$R = \rho \frac{L}{A} \Rightarrow \rho = \frac{RA}{L} = ohm \times cm$$

8

(a) Let $n = k\rho^a a^b T^c$ where $[\rho] = [ML^{-3}]$, [a] = [L] and $[T] = [MT^{-2}]$ Comparing dimensions both sides we get $a = \frac{-1}{2}, b = \frac{-3}{2}$ and $c = \frac{1}{2} \therefore \eta = k\rho^{-1/2}a^{-3/2}T^{-1/2}$

$$=\frac{K\sqrt{T}}{a^{1/2}a^{3/2}}$$

(a)

10

Diameter of wire,

$$d = MSR + CSR \times LC$$

$$= 0 + 52 \times \frac{1}{100}$$

= 0.52 mm = 0.052 cm.

- 11 (d) $[\eta] = ML^{-1}T^{-1} \text{ so its unit will be } kg/m\text{-sec}$ 12 (c) $F = \frac{Gm_1m_2}{d^2}; \quad \therefore \ G = \frac{Fd^2}{m_1m_2} = Nm^2/kg^2$
- 13

14

(a)

(a)

(b)

$$k = \left[\frac{R}{N}\right] = \left[ML^2T^{-2}\theta^{-1}\right]$$

15

$$\frac{[\text{Energy}]}{[\text{Volume}]} = \frac{[\text{ML}^2\text{T}^{-2}]}{[\text{L}^3]} = [\text{ML}^{-1}\text{T}^{-2}]$$
$$[\text{pressure}] = \frac{[\text{MLT}^{-2}]}{[\text{L}^2]} = [\text{ML}^{-1}\text{T}^{-2}]$$

Capacitance
$$C = \frac{\text{Charge}}{\text{potential}} = \frac{q}{V}$$

Also potential $= \frac{\text{work}}{\text{charge}}$
 $\therefore \quad C = \frac{q^2}{J}$ as well as $C = \frac{J}{V^2}$.

Thus, (a), (c), (d) are equivalent to farad but (b) is not equivalent to farad.

 $\left(\because V = \frac{W}{q} \right)$

18

(b) Velocity $v = k\lambda^a \rho^b g^c \Longrightarrow [M^0 LT^{-1}] = [L^a][M^b L^{-3b}][L^c T^{-2c}]$ Or $[M^0 LT^{-1}] = [M^b L^{a-3b+c} T^{-2c}]$ Equating powers of M,L and T, we get -2c = -1Again, $a - 3b + c = 1, b = 0, c = \frac{1}{2}$ $\therefore v = k\lambda^{1/2}\rho^0 g^{1/2}$ or $v^2 \propto g\lambda$ (a)

Impulse = force \times time

$$= [MLT^{-2}][T]$$
$$= [MLT^{-1}]$$

20

19

(a)
$$X = \left[M^a L^b T^c \right]$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
Α.	D	С	С	В	С	A	С	А	D	А
Q.	11	12	13	14	15	16	17	18	19	20
Α.	D	С	A	A	A	D	В	В	A	А

Maximum % error in $X = a\alpha + b\beta + c\gamma$

