CLASS : XITh
Solutions
SUBJECT : PHYSICS
DPP NO.: 7

Topic:-UNITS AND MEASUREMENTS

1
(d)

Express the result in two significant figures.
3
(c)
$B=\frac{F}{I L}=\frac{\left[M L T^{-2}\right]}{[A][L]}=\left[M T^{-2} A^{-2}\right]$
(c)
$30 V S D=29 M S D$
$1 V S D=\frac{29}{30} M S D$
Least count of vernier $=1$ M.S.D. -1 V.S.D.
$=0.5^{\circ}-\frac{29}{30} \times 0.5^{\circ}=\frac{0.5^{\circ}}{30}$
Reading of vernier $=$ M.S. reading + V.S. reading \times L.C.
$=58.5^{\circ}+9 \times \frac{0.5^{\circ}}{30}=58.65$
(a)

From Coulomb's law, the force of attraction/repulsion between two point charges q and q separated by distance r is

$$
\begin{aligned}
& F=\frac{1}{4 \pi \varepsilon 0} \frac{q^{2}}{r^{2}} \\
\Rightarrow \quad \varepsilon_{0} & =\frac{1}{4 \pi} \cdot \frac{q^{2}}{F r^{2}}
\end{aligned}
$$

Where ε_{0} is electric permittivity.
Dimensions of $\varepsilon_{0}=\frac{\left[\mathrm{AT}^{2}{ }^{2}\right.}{\left[\mathrm{MLT}^{-2}\right]\left[\mathrm{L}^{2}\right]}$

$$
\left[\varepsilon_{0}\right]=\left[\mathrm{A}^{2} \mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{-4}\right]
$$

(a)

Percentage error in radius is $\frac{0.1}{4.3} \times 100$. again, $V \propto R^{3}$

7

8

9
(a)

Required percentage error

$$
=2 \times \frac{0.01}{15.12} \times 0+\frac{0.001}{10.15} \times 10=4+1=5
$$

(a)

We know that the dimensional formula of energy is $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$

$$
\begin{gathered}
n_{2}=1\left[\left[\frac{1 \mathrm{~kg}}{10 \mathrm{~kg}}\right]^{1}\left[\frac{1 \mathrm{~m}}{1 \mathrm{~km}}\right]\left[\frac{1 \mathrm{~s}}{1 \mathrm{~min}}\right]^{2}\right. \\
=\frac{1}{10} \times \frac{1}{10^{6}} \times \frac{1}{(60)^{-2}}=\frac{3600}{10^{7}}=3.6 \times 10^{-4}
\end{gathered}
$$

(d)
$\lambda=m^{p} v^{q} \mathrm{~h}^{r}$
$\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right]=\left[\mathrm{M}^{p}\right]\left[\mathrm{LT}^{-1}\right]^{q}\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]^{r}$
$\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right]=\left[\mathrm{M}^{p+r} \mathrm{~L}^{q+2 r} \mathrm{~T}^{-q-r}\right]$
$\therefore \quad p+r=0, q+2 r=1,-q-r=0$
After solving we get
$p=-1, q=-1, r=1$
(a)

Least count LC
Pitch $_{h}$
$=\overline{\text { Number of divisions on circular scale }}$
$=\frac{0.5}{50}=0.01 \mathrm{~mm}$
Now, diameter of ball
$=(2 \times 0.5 \mathrm{~mm})+(25-5)(0.01)=1.2 \mathrm{~mm}$
(c)

Volume of cylinder $V=\pi r^{2} l$
Percentage error in volume
$\frac{\Delta^{V}}{V} \times 100=\frac{2 \Delta^{r}}{r} \times 100+\frac{\Delta^{l}}{l} \times 100$
$=\left(2 \times \frac{0.01}{2.0} \times 100+\frac{0.1}{5.0} \times 100\right)=(1+2) \%=3 \%$
(a)

Let $\mathrm{h} \propto G^{x} L^{y} E^{z}$
$\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right] \propto\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]^{x}\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]^{y}\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]^{z}$
$\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]=k\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]^{x}\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]^{y}\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]^{z}$
Comparing the powers, we get

$$
\begin{align*}
1 & =-x+y+z \tag{i}\\
2 & =3 x+2 y+2 z \tag{ii}\\
-1 & =-2 x-y-2 z \tag{iii}
\end{align*}
$$

On solving Eqs. (i), (ii) and (iii), we get

$$
x=0
$$

\therefore Gravitational constant has no dimensions
(d)

We know that

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

In CGS units

$$
d=0.625 \mathrm{gcm}^{-3}
$$

In SI units

$$
d=\frac{0.625 \times 10^{-3} \mathrm{~kg}}{10^{-6} \mathrm{~m}^{3}}=625 \mathrm{kgm}^{-3}
$$

(a)

The velocity of a body at highest point of vertical circle is,

$$
v=\sqrt{r g}
$$

Or

$$
v^{2}=r g
$$

Or $\quad \frac{v^{2}}{r g}=$ constant
Hence, $\frac{v^{2}}{r g}$ is dimensionless.
(b)

Magnetic moment is the strength of magnet. Its SI unit is amp $\times \mathrm{m}^{2}$ or $\mathrm{N}-\mathrm{m} /$ telsa or JT^{-1}.
(a)

Let $F \propto P^{x} V^{y} T^{z}$
By substituting the following dimensions:
$[P]=\left[M L^{-1} T^{-2}\right][V]=\left[L T^{-1}\right],[T]=[T]$
and comparing the dimension of both sides
$x=1, y=2, z=2$, so $F=P V^{2} T^{2}$
(a)

Indestructibility, invariability and reproductibility are essential characteristics of a unit of measurement.
(c)

Energy $=$ force \times distance, so if both are increased by 4 times then energy will increase by 16 times

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	D	C	C	C	A	A	A	A	D	A			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	C	A	D	A	B	A	A	B	A	C			

