

CLASS : XITH SUBJECT : PHYSICS DATE : DPP NO. : 6

Topic:-UNITS AND MEASUREMENTS

1.	Dimensions of bulk a) $\left[M^{-1}LT^{-2}\right]$		c) [ML ⁻² T ⁻²]	$d) \left[M^2 L^2 T^{-1} \right]$
2.	difference applied a	-	e errors in the measur	owing in it and the voltage ement of the current and the e of the wire is d) 3%
3.	'Torr' is the unit of a) Pressure	b) Volume	c) Density	d) Flux
4.	9	is the metre. Suppose we bressed in terms of the n b) x^2	-	length which equal x metre. de d) x^{-2}
5.	The velocity of a para) [L]	ticle v at an instant t is $\mathfrak g$ b) $\left[LT^{-1} \right]$	given by $v = at + bt^2 t$ c) [LT ⁻²]	
6.		electric potential are b) [<i>MLT</i> ⁻² <i>Q</i> ⁻¹]	c) $[ML^2T^{-1}Q]$	$\mathrm{d})[ML^2T^{-2}Q]$
7.	If the radius of the sphere is (5.3 ± 0.1) <i>cm</i> . Then percentage error in its volume will be			
	a) $3 + 6.01 \times \frac{100}{5.3}$	b) $\frac{1}{3} \times 0.01 \times \frac{100}{5.3}$	c) $\left(\frac{3 \times 0.01}{5.3}\right) \times 100$	d) $\frac{0.1}{5.3} \times 100$
8.	$v = at + \frac{b}{t+c}$	is cms ⁻¹) of a particle is going ions of a , b and c are c	given in terms of t (in s b) L^2 T	
	, , , , , , , , , , , , , , , , , , ,	-) L	-

_			
c) [LT^2	[LT]	[L]

9. $\frac{h}{2\pi}$ is the dimension of

d) Angular momentum

10. If E = energy, G = gravitational constant, I = impulse and M = mass, then dimensions of $\frac{GIM^2}{E^2}$ are same as that of

d) Force

11. A public park, in the form of a square, has an area of (100 ± 0.2) m². The side of park is

a)
$$(10 \pm 0.01)$$
m

b)
$$(10 \pm 0.1)$$
m

c)
$$(10.0 \pm 0.1)$$
m

d)
$$(10.0 \pm 0.2)$$
 m

12. Ins is defined as

a)
$$10^{-9}$$
 s of Kr – clock of 1650763.73 oscillations

b)
$$10^{-9}$$
 s of Kr – clock of 6521389.63 oscillations

c)
$$10^{-9}$$
 s of Cs — clock of 1650763.73 oscillations

d)
$$10^{-9}$$
 s of Cs – clock of 9192631770 oscillations

13. If the dimensions of a physical quantity are given by $M^aL^bT^c$, then the physical quantity will be

a) Pressure if
$$a = 1$$
, $b = -1$, $c = -2$

b) Velocity if
$$a = 1$$
, $b = 0$, $c = -1$

c) Acceleration if
$$a = 1, b = 1, c = -2$$

d) Force if
$$a = 0, b = -1, c = -2$$

14. The relative density of material of a body is found by weighing it first in air and then in water. If the weight in air is (5.00 ± 0.05) newton and weight in water is (4.00 ± 0.05) newton. Then the relative density along with the maximum permissible percentage error is

a)
$$5.0 \pm 11\%$$

b)
$$5.0 \pm 1\%$$

c)
$$5.0 \pm 6\%$$

d)
$$1.25 \pm 5\%$$

15. Identify the pair which has different dimensions

- a) Planck's constant and angular momentum
- b) Impulse and linear momentum
- c) Angular momentum and frequency
- d) Pressure and Young's modulus

16. In which of the following system of units, *weber* is the unit of magnetic flux

- a) CGS
- b) MKS
- c) SI

d) None of these

17. The equation of state of some gases can be expressed as $\left(P + \frac{a}{V^2}\right) = \frac{R\theta}{V}$. Where P is the pressure, V the volume, θ the absolute temperature and a and b are constants. The dimensional formula

of a is

- a) $[ML^5T^{-2}]$
- b) $[M^{-1}L^5T^{-2}]$
- c) [*ML*⁻¹*T*⁻²]
- d) $[ML^{-5}T^{-2}]$

18. If E, M, L and G denote energy, mass, angular momentum and gravitational constant respectively, then the quantity (EL^2/M^5G^2) has the dimensions of

- a) Angle b) Length c) Mass d) Time
- 19. The physical quantity which has the dimensional formula [M¹T⁻³] is a) Surface tension b) Density c) Solar constant d) Compressibility
- 20. The percentage errors in the measurement of a mass and speed are 2% and 3% respectively. How much will be the maximum error in the estimate of kinetic energy obtained by measuring mass and speed?
 - a) 11% b) 8% c) 5% d) 1%

