CLASS : XITh
DATE :

Topic :-UNITS AND MEASUREMENTS

1

Now,
(b)

Bulk modulus $\mathrm{K}=\frac{\text { normal stress }}{\text { volumetric strain }}$

$$
\begin{aligned}
& =\frac{F / A}{-\Delta V / V} \\
& =-\frac{F V}{A \Delta V}
\end{aligned}
$$

$$
\frac{F}{A}=p
$$

$$
\therefore \quad K=\frac{p V}{\Delta^{V}}
$$

As volumetric strain is dimensionless.
\therefore Dimensions of $K=$ dimensions of normal stress

$$
\Rightarrow \quad[K]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]
$$

(a)
$R=\frac{V}{I} \Rightarrow \pm \frac{\Delta^{R}}{R}= \pm \frac{\Delta^{V}}{V} \pm \frac{\Delta^{I}}{I}$
$=3+3=6 \%$
4
(d)
$n(x \mathrm{~m})^{2}=1 \mathrm{~m}^{2}$ or $n=\frac{1}{x^{2}}$
5
(d)

Given, $v=a t+b t^{2}$
Applying the law of homogeneity $[v]=\left[b t^{2}\right]$
Or

$$
\left[\mathrm{LT}^{-1}\right]=\left[b \mathrm{~T}^{2}\right]
$$

Or

$$
[b]=\left[\mathrm{LT}^{-3}\right]
$$

6

7

8

10
(a)
$V=\frac{W}{Q}=\left[M L^{2} T^{-2} Q^{-1}\right]$
(c)

Volume of sphere $(V)=\frac{4}{3} \pi r^{3}$
$\%$ error in volume $=3 \times \frac{\Delta r}{r} \times 100=\left(3 \times \frac{0.1}{5.3}\right) \times 100$
(d)

Given, $v=a t+\frac{b}{t+c}$
Since, LHS is equal to velocity, so $a t$ and $\frac{b}{t+c}$ must have the dimensions of velocity.
$\therefore \quad a t=v$
Or $a=\frac{v}{t}=\frac{\left[\mathrm{LT}^{-1}\right]}{[\mathrm{T}]}=\left[\mathrm{LT}^{-2}\right]$
Now, $c=$ time $\quad(\because$ like quantities are added $)$

$$
\therefore \quad c=t=[\mathrm{T}]
$$

Now,

$$
\frac{b}{t+c}=v
$$

$\therefore \quad b=v \times$ time $=\left[\mathrm{LT}^{-1}\right][\mathrm{T}]=[\mathrm{L}]$
(a)

Dimensions of $E=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
Dimensions of $G=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$
Dimensions of $I=\left[\mathrm{MLT}^{-1}\right]$
And dimension of $M=[\mathrm{M}]$
\therefore Dimensions of $\frac{G I M^{2}}{E^{2}}=\frac{\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]\left[\mathrm{MLT}^{-1}\right]\left[\mathrm{M}^{2}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]^{2}}$
$=[\mathrm{T}]$
$=$ Dimensions of time
(a)

Percentage error inside $=\frac{1}{2}\left[\frac{0.2}{100} \times 100\right]=0.1$
Absolute error inside $=\frac{0.1}{100} \times 10=0.01$
(d)

The second is the duration of 9192631770 period of the radiation corresponding to the transition between the two hyperfine levels of the ground state of cesium-133 atom.
Therefore, 1 ns is $10^{-9} \mathrm{~s}$ of Cs-clock of 9192631770 oscillations.

(a)

Weight in air $=(5.00 \pm 0.05) \mathrm{N}$
Weight in water $=(4.00 \pm 0.05) \mathrm{N}$
Loss of weight in water $=(1.00 \pm 0.1) \mathrm{N}$
Now relative density $=\frac{\text { weight in air }}{\text { weight loss in water }}$
i.e. $R . D=\frac{5.00 \pm 0.05}{1.00 \pm 0.1}$

Now relative density with max permissible error

$$
\begin{aligned}
& =\frac{5.00}{1.00} \pm\left(\frac{0.05}{5.00}+\frac{0.1}{1.00}\right) \times 100=5.0 \pm(1+10) \% \\
& =5.0 \pm 11 \%
\end{aligned}
$$

(c)

Angular momentum $=\left[M L^{2} T^{-1}\right]$, Frequency $=\left[T^{-1}\right]$
(a)

By the principle of dimensional homogenity

$$
\begin{aligned}
& {[P]=\left[\frac{a}{V^{2}}\right] \Rightarrow[a]=[P] \times\left[V^{2}\right]=\left[M L^{-1} T^{-2}\right]\left[L^{6}\right]} \\
& =\left[M L^{5} T^{-2}\right]
\end{aligned}
$$

(a)
$[E]=\left[M L^{2} T^{-2}\right]$
$[M]=[M]$
$[L]=\left[M L^{2} T^{-1}\right]$
$[G]=\left[M^{-1} L^{3} T^{-2}\right]$
$\left[\frac{E L^{2}}{M^{5} G^{2}}\right]=\frac{\left[M L^{2} T^{-2}\right]\left[M L^{2} T^{-1}\right]^{2}}{[M]^{5}\left[M^{-1} L^{3} T^{-2}\right]^{2}}$
$=\frac{\left[M L^{2} T^{-2}\right]\left[M^{2} L^{4} T^{-2}\right]}{\left[M^{5}\right]\left[M^{-2} L^{6} T^{-4}\right]}=\frac{\left[M^{3} L^{6} T^{-4}\right]}{\left[M^{3} L^{6} T^{-4}\right]}$
$=\left[m^{0} L^{0} T^{0}\right]=$ Angle
(c)
$\left[\mathrm{MT}^{-3}\right]=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{2}\right][\mathrm{T}]}=$ energy /area \times time $=$ dimensions of solar constant.
(b)

We know that kinetic energy $=\frac{1}{2} m v^{2}$
Required percentage error is $2 \%+2 \times 3 \% i e, 8 \%$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	B	A	A	D	D	A	C	D	D	A	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	A	D	A	A	C	C	A	A	C	B	

