CLASS : XITh
Solutions
SUBJECT : PHYSICS
DPP NO. : 4

Topic :-UNITS AND MEASUREMENTS

1
(b)

Force $=$ mass \times acceleration
Or $\quad F=m a$
$\therefore \quad[F]=[m][a]$
$=[\mathrm{M}]\left[\mathrm{LT}^{2}\right]$
$=\left[\mathrm{MLT}^{-2}\right]$
2
(d)

$$
\left[\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]=\frac{\left[\mathrm{MLT}^{-2}\right]}{[\mathrm{L}]\left[\mathrm{L}^{2}\right]}
$$

$=\frac{\text { Force }}{\text { distance } \times \text { area }}=\frac{\text { pressure }}{\text { distance }}$
$=$ pressure gradient.
(c)

Let $v^{x}=k g^{y} \lambda^{z} \rho^{\delta}$. Now by submitting the dimensions of each quantities and equating the powers of M, L and T
we get $\delta=0$ and $x=2, y=1, z=1$
4
(a)

Time period
$T \propto p^{a} \rho^{b} E^{c}$
Or, $\quad T=k p^{a} \rho^{b} E^{c}$
k, is a dimensionless constant.
According to homogeneity of dimensions,
LHS=RHS

$$
\begin{aligned}
& \therefore \quad[\mathrm{T}]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]^{a}\left[\mathrm{ML}^{-3}\right]^{b}\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]^{c} \\
& {[\mathrm{~T}]=\left[\mathrm{M}^{a+b+c}\right]\left[\mathrm{L}^{-a-3 b+2 c}\right]\left[\mathrm{T}^{-2 a-2 c}\right]}
\end{aligned}
$$

Comparing the powers, we obtain
$a+b+c=0$
$-a-3 b+2 c=0$
$-2 a-2 c=1$
On solving, we get
$a=-\frac{5}{6}, b=\frac{1}{2}, c=\frac{1}{3}$
(b)

Average value $=\frac{2.63+2.56+2.42+2.71+2.80}{5}$
$=2.62 \mathrm{sec}$
Now $\left|\Delta T_{1}\right|=2.63-2.62=0.01$
$\left|\Delta T_{2}\right|=2.62-2.56=0.06$
$\left|\Delta T_{3}\right|=2.62-2.42=0.20$
$\left|\Delta T_{4}\right|=2.71-2.62=0.09$
$\left|\Delta T_{5}\right|=2.80-2.62=0.18$
Mean absolute error
$\Delta T=\frac{\left|\Delta T_{1}\right|+\left|\Delta T_{2}\right|+\left|\Delta T_{3}\right|+\left|\Delta T_{4}\right|+\left|\Delta T_{5}\right|}{5}$
$=\frac{0.54}{5}=0.108=0.11 \mathrm{sec}$
(c)
$Y=\frac{4 M g L}{\pi D^{2} I}$ so maximum permissible error in Y
$=\frac{\Delta^{Y}}{Y} \times 100=\left(\frac{\Delta^{M}}{M}+\frac{\Delta g}{g}+\frac{\Delta^{L}}{L}+\frac{2 \Delta D}{D}+\frac{\Delta^{l}}{l}\right) \times 100$
$=\left(\frac{1}{300}+\frac{1}{981}+\frac{1}{2820}+2 \times \frac{1}{41}+\frac{1}{87}\right) \times 100$
$=0.065 \times 100=6.5 \%$
(d)
$\tau=\frac{d L}{d t} \Rightarrow d L=\tau \times d t=r \times F \times d t$
i.e., the unit of angular momentum is joule-second
(b)
$f=\frac{1}{2 \pi \sqrt{L C}} \Rightarrow L C=\frac{1}{f^{2}}=\left[M^{0} L^{0} T^{2}\right]$
(a)
$\frac{\text { angular momentum }}{\text { linear momentum }}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]}{\left[\mathrm{MLT}^{-1}\right]}=\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right]$
(a)
$[e]=[A T], \in_{0}=\left[M^{-1} L^{-3} T^{4} A^{2}\right],[\mathrm{h}]=\left[M L^{2} T^{-1}\right]$
And $[c]=\left[L T^{-1}\right]$
$\therefore\left[\frac{e^{2}}{4 \pi \epsilon_{0 \mathrm{Oh}} C}\right]=\left[\frac{A^{2} T^{2}}{M^{-1} L^{-3} T^{4} A^{2} \times M L^{2} T^{-1} \times L T^{-1}}\right]$
$=\left[M^{0} L^{0} T^{0}\right]$
(a)

The result has to be in one significant umber only.
(b)
$v \propto g^{p} h^{q}$ (given)
By submitting the dimension of each quantity and comparing the powers on both sides we get $\left[L T^{-1}\right]=\left[L T^{-2}\right]^{p}[L]^{q}$
$\Rightarrow p+q=1,-2 p=-1, \therefore p=\frac{1}{2}, q=\frac{1}{2}$
(b)

Force $=$ Mass \times acceleration

$$
=[M]\left[L T^{-2}\right]=\left[M L T^{-2}\right]
$$

Torque $=$ Force \times distance $=\left[M L T^{-2}\right][L]=\left[M L^{2} T^{-2}\right]$
Work $=$ Force \times distance $=\left[M L T^{-2}\right][L]=\left[M L^{2} T^{-2}\right]$
Energy $=\left[M L^{2} T^{-2}\right]$
Power $=\frac{\text { Work }}{\text { Time }}=\frac{\left[M L^{2} T^{-2}\right]}{[T]}=\left[M L^{2} T^{-3}\right]$
(b)

Positions $x=k a^{m} t^{n}$

$$
\begin{aligned}
{\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right] } & =\left[\mathrm{LT}^{-2}\right]^{m}[\mathrm{~T}]^{n} \\
& =\left[\mathrm{M}^{0} \mathrm{~L}^{m} \mathrm{~T}^{-2 m+n}\right]
\end{aligned}
$$

On comparing both sides

$$
\begin{aligned}
m & =1 \\
-2 m+n & =0 \\
n & =2 m \\
n & =2 \times 1=2
\end{aligned}
$$

(a)

$$
\because R=\frac{P V}{T}=\left[\frac{M L^{-1} T^{-2} \times L^{3}}{\theta}\right]=\left[M L^{2} T^{-2} \theta^{-1}\right]
$$

(b)

We know that
Specific heat $=\frac{Q}{m \Delta t}$
Unit of specific heat $=\frac{\text { unit of heat }}{\text { unit of mass } \times \text { unit of temperature }}$
\therefore Unit of specific heat $=\frac{\mathrm{J}}{\mathrm{kg}^{\circ} \mathrm{C}}=\mathrm{Jkg}^{-1{ }^{\circ} \mathrm{C}^{-1}}$

20
(a)
$K=Y \times r_{0}=\left[M L^{-1} T^{-2}\right] \times[L]=\left[M T^{-2}\right]$
$Y=$ Young's modulus and $r_{0}=$ Interatomic distance
(a)

Couple of force $=|\vec{r} \times \vec{F}|=\left[M L^{2} T^{-2}\right]$
Work $=[\vec{F} \cdot \vec{d}]=\left[M L^{2} T^{-2}\right]$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	B	D	C	A	B	C	D	B	A	A	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	A	A	B	B	D	B	A	B	A	A	

