CLASS : XITh
SUBJECT : PHYSICS
DATE:
DPP NO. : 3

Topic :- UNITS AND MEASUREMENTS

1. The dimensions of $\frac{a}{b}$ in the equation $p=\frac{a-t^{2}}{b x}$ where p is pressure, x is distance and t is time, are
a) $\left[\mathrm{M}^{2} \mathrm{LT}^{-3}\right]$
b) $\left[\mathrm{MT}^{-2}\right]$
c) $\left[\mathrm{LT}^{-3}\right]$
d) $\left[\mathrm{ML}^{3} \mathrm{~T}^{-1}\right]$
2. The focal length of a mirror is given by $\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$ where u and v represent object and image `distances respectively. The maximum relative error in f is
a) $\frac{\Delta f}{f}=\frac{\Delta^{u}}{u}+\frac{\Delta^{v}}{v}$
b) $\frac{\Delta f}{f}=\frac{1}{\Delta u / u}+\frac{1}{\Delta^{v / v}}$
c) $\frac{\Delta^{f}}{f}=\frac{\Delta^{u}}{u}+\frac{\Delta^{v}}{v}-\frac{\Delta(u+v)}{u+v}$
d) $\frac{\Delta f}{f}=\frac{\Delta u}{u}+\frac{\Delta v}{v}+\frac{\Delta u}{u+v}+\frac{\Delta^{v}}{u+v}$
3. Which of the following relation is wrong
a) 1 ampere $\times 1 \mathrm{ohm}=1$ volt
b) 1 watt $\times 1$ sec $=1$ joule
c) $1 \times$ newton per coulomb $=1$ volt per meter
d) 1 coulomb $\times 1$ volt $=1$ watt
4. The unit of self inductance of a coil is
a) Farad
b) Henry
c) Weber
d) Tesla
5. Out of the following four dimensional quantities, which one qualifies to be called a dimensional constant?
a) Acceleration due to gravity
b) Surface tension of water
c) Weight of a standard kilogram mass
d) The velocity of light in vacuum
6. The radius of the proton is about $10^{-15} \mathrm{~m}$. The radius of the observable universe is $10^{26} \mathrm{~m}$. identify the distance which is half-way between these two extremes on a logarithmic scale.
a) $10^{21} \mathrm{~m}$
b) $10^{6} \mathrm{~m}$
c) $10^{-6} \mathrm{~m}$
d) $10^{0} \mathrm{~m}$
7. The position of a particle at time t is given by the equation $x(t)=\frac{v_{0}}{A}\left(1-e^{A t}\right), v_{0}=$ constant and $A>0$. Dimensions of v_{0} and A respectively are
a) $\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right]$ and $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
b) $\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$ and $\left[\mathrm{M}^{0} \mathrm{LT}^{-2}\right]$
c) $\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$ and $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}\right]$
d) $\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$ and $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
8. One nanometre is equal to
a) $10^{9} \mathrm{~mm}$
b) $10^{-6} \mathrm{~cm}$
c) $10^{-7} \mathrm{~cm}$
d) $10^{-9} \mathrm{~cm}$
9. $\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$ is the dimensional formula of
a) Electric resistance
b) Capacity
c) Electric potential
d) Specific resistance
10. The dimensions of Planck's constant are
a) $\left[M^{2} L^{2} \mathrm{~T}^{-2}\right]$
b) $\left[\mathrm{MLT}^{-2}\right]$
c) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
d) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
11. If the length of $\operatorname{rod} A$ is $3.25 \pm 0.01 \mathrm{~cm}$ and that of B is $4.19 \pm 0.01 \mathrm{~cm}$ then the $\operatorname{rod} B$ is longer than $\operatorname{rod} A$ by
a) $0.94 \pm 0.00 \mathrm{~cm}$
b) $0.94 \pm 0.01 \mathrm{~cm}$
c) $0.94 \pm 0.02 \mathrm{~cm}$
d) $0.94 \pm 0.005 \mathrm{~cm}$
12. The dimensions of $e^{2} / 4 \pi \varepsilon_{0} \mathrm{~h} c$, where e, ε_{0}, h and c are electronic charge, electric permittivity, Planck's constant and velocity of light in vacuum respectively, are
a) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
b) $\left[\mathrm{ML}^{0} \mathrm{~T}^{0}\right]$
c) $\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right]$
d) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1}\right]$
13. The length, breadth and thickness of a block are given by $l=12 \mathrm{~cm}, b=6 \mathrm{~cm}$ and $t=$ 2.45 cm

The volume of block according to the idea of significant figures should be
a) $1 \times 10^{2} \mathrm{~cm}^{3}$
b) $2 \times 10^{2} \mathrm{~cm}^{3}$
c) $1.763 \times 10^{2} \mathrm{~cm}^{3}$
d) None of tehse
14. A physical quantity A is related to four observables a, b, c and d as follows

$$
A=\frac{a^{2} b^{3}}{c \sqrt{d}}
$$

The percentage errors of measurement in a, b, c and d are $1 \%, 3 \%, 2 \%$ and 2% respectively. What is the percentage error in the quantity A ?
a) 12%
b) 7%
c) 5%
d) 14%
15. Ampere-hour is the unit of
a) Quantity of charge
b) Potential
c) Energy
d) Current
16. The dimensions of $1 / 2 \varepsilon E^{2}$ are same as
a) Energy density (energy per unit volume)
b) Energy
c) Power
d) None of the above
17. The velocity of a particle (v) at an instant t is given by $v=a t+b t^{2}$ the dimension of b is
a) L
b) $L T^{-1}$
c) $L T-2$
d) $L T^{-3}$
18. Wavelength of ray of light is 0.00006 m . It is equal to
a) 6 micron
b) 60 micron
c) 600 micron
d) 0.6 micron
19. The unit of surface tension in SI system is
a) Dyne $/ \mathrm{cm}^{2}$
b) Newton $/ m$
c) Dyne $/ \mathrm{cm}$
d) Newton $/ m^{2}$
20. Dimensions of $\frac{1}{\mu_{0} \epsilon_{0}}$, where symbols have their usual meaning, are
a) $\left[l T^{-1}\right]$
b) $\left[L^{-1} T\right]$
c) $\left[L^{-2} T^{2}\right]$
d) $\left[L^{2} T^{-2}\right]$

