

CLASS: XITH SUBJECT: PHYSICS DATE:

DPP NO.: 3

1.	The dimensions of $\frac{a}{b}$ in the equation $p = \frac{a - t^2}{bx}$ where p is pressure, x is distance and t is time,
	are

- a) $\left[M^2 L T^{-3} \right]$
- b) [MT⁻²]
- c) [LT⁻³]
- d) $\left[ML^{3}T^{-1} \right]$
- The focal length of a mirror is given by $\frac{1}{t} = \frac{1}{u} + \frac{1}{v}$ where u and v represent object and image 'distances respectively. The maximum relative error in f is
 - a) $\frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v}$
 - c) $\frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v} \frac{\Delta (u+v)}{u+v}$

b) $\frac{\Delta f}{f} = \frac{1}{\Delta u/u} + \frac{1}{\Delta v/v}$

d)
$$\frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v} + \frac{\Delta u}{u+v} + \frac{\Delta v}{u+v}$$

- 3. Which of the following relation is wrong
 - a) 1 ampere \times 1 ohm = 1 volt

- b) 1 watt \times 1 sec = 1 joule
- c) $1 \times \text{newton per coulomb} = 1 \text{ volt per meter}$ d) $1 \text{ coulomb} \times 1 \text{ volt} = 1 \text{ watt}$
- 4. The unit of self inductance of a coil is
 - a) Farad
- b) Henry
- c) Weber
- d) Tesla
- 5. Out of the following four dimensional quantities, which one qualifies to be called a dimensional constant?
 - a) Acceleration due to gravity

- b) Surface tension of water
- c) Weight of a standard kilogram mass
- d) The velocity of light in vacuum
- The radius of the proton is about 10^{-15} m. The radius of the observable universe is 10^{26} m. identify the distance which is half-way between these two extremes on a logarithmic scale.
 - a) 10^{21} m
- b) 10^6 m
- c) 10^{-6} m
- $d) 10^{0} m$
- 7. The position of a particle at time t is given by the equation $x(t) = \frac{v_0}{4}(1 e^{At})$, $v_0 = \text{constant}$ and A > 0. Dimensions of v_0 and A respectively are
 - a) $[M^0LT^0]$ and $[M^0L^0T^{-1}]$

b) $[M^0LT^{-1}]$ and $[M^0LT^{-2}]$

c) $[M^0LT^{-1}]$ and $[M^0L^0T]$

d) $[M^0LT^{-1}]$ and $[M^0L^0T^{-1}]$

8.	One nanometre is equal to					
	a) 10 ⁹ mm	b) 10 ⁻⁶ <i>cm</i>	c) 10 ⁻⁷ <i>cm</i>	d) 10 ⁻⁹ cm		
9.	[ML ² T ⁻³ A ⁻²] is the dime a) Electric resistance	ensional formula of b) Capacity	c) Electric potential	d) Specific resistance		
			c) Electric potential	u) specific resistance		
10.	The dimensions of Plana) $[M^2L^2T^{-2}]$	nck's constant are b) [MLT ⁻²]	c) [ML ² T ⁻²]	d) [ML ² T ⁻¹]		
11.	If the length of rod A is 3.25 ± 0.01 cm and that of B is 4.19 ± 0.01 cm then the rod B is longer than rod A by					
	_	b) $0.94 \pm 0.01 \ cm$	c) $0.94 \pm 0.02 \ cm$	d) 0.94 ± 0.005 cm		
12.	The dimensions of $e^2/4\pi\epsilon_0 hc$, where e , ϵ_0 , h and c are electronic charge, electric permittivity, Planck's constant and velocity of light in vacuum respectively, are					
	a) $\left[M^0 L^0 T^0 \right]$	b) [ML ⁰ T ⁰]	c) $[M^0LT^0]$	$d) \left[M^0 L^0 T^1 \right]$		
13. 2.45	The length, breadth and thickness of a block are given by $l=12cm,b=6cm$ and $t=5cm$					
		_	gnificant figures should c) $1.763 \times 10^2 cm^3$			
14.	A physical quantity <i>A</i> is $A = \frac{a^2b^3}{c\sqrt{d}}$	s rel <mark>ated t</mark> o four observa	ables a , b , c and d as follows	ows		
	The percentage errors of measurement in a , b , c and d are 1%, 3%, 2% and 2% respective What is the percentage error in the quantity A ?					
	a) 12%	b) 7%	c) 5%	d)14%		
15.	Ampere-hour is the unital a) Quantity of charge		c) Energy	d) Current		
16.	The dimensions of $1/2 \ \epsilon E^2$ are same as					
	a) Energy density (ener c) Power		b) Energy d) None of the above			
17.	The velocity of a partic a) L	le (v) at an instant t is ${ m g}$ b) LT^{-1}	iven by $v = at + bt^2$ the c) LT^2	dimension of b is d) LT^{-3}		
18.	Wavelength of ray of ligal a) 6 micron	ght is 0.00006 <i>m</i> . It is eq b) 60 <i>micron</i>	ual to c) 600 micron	d) 0.6 micron		

- 19. The unit of surface tension in SI system is
 - a) $Dyne/cm^2$
- b) Newton /m
- c) Dyne/cm
- d) $Newton/m^2$
- 20. Dimensions of $\frac{1}{\mu_0 \epsilon_0}$, where symbols have their usual meaning, are
 - a) $[lT^{-1}]$
- b) $[L^{-1}T]$
- c) $[L^{-2}T^2]$
- d) $[L^2T^{-2}]$

