CLASS : XITh
Solutions
SUBJECT : PHYSICS
DPP NO. : 3

Topic :-UNITS AND MEASUREMENTS

1
(b)

Given, $p=\frac{a-t^{2}}{b x}$ or $p b x=a-t^{2}$
By the law of homogeneity of dimensional equation.
Dimensions of $a=$ dimensions of $t^{2}=\left[\mathrm{T}^{2}\right]$
Dimensions of $b=$ dimensions of $\frac{t^{2}}{p x}=\left[\mathrm{M}^{-1} \mathrm{~T}^{4}\right]$
So, dimensions of $\frac{a}{b}$ is $\left[\mathrm{MT}^{-2}\right]$.
(d)
$f=\frac{u v}{u+v}, \frac{\Delta f}{f}=\frac{\Delta^{u}}{u}+\frac{\Delta v}{v}+\frac{(u+v)}{u+v}$
(b)
$L=\frac{\emptyset}{I}=\frac{W b}{A}=$ Henry
(b)
$r_{1}=10^{-15} \mathrm{~m}, r_{2}=10^{26} \mathrm{~m}$
$\log r=\frac{1}{2}\left[\log 10^{-15}+\log 10^{26}\right]$
$=\frac{1}{2}[-15+26]=5.5 \approx 6 \Rightarrow r=10^{6} \mathrm{~m}$

7

(d)

The dimensions of $x=$ dimensions of $\frac{v_{0}}{A}$
Therefore, out of the given options v_{0} has dimensions equal to $\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$ and A has dimensions equal to $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right.$]

So, that $\frac{\left[v_{0}\right]}{[A]}=\frac{\left[\mathrm{m}^{0} \mathrm{LT}^{-1}\right]}{\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]}=[L]$

$$
=\operatorname{dimension} \text { of } x
$$

8

9
(c)
$1 \mathrm{~nm}=10^{-9} \mathrm{~m}=10^{-7} \mathrm{~cm}$
(c)

Electric potential $V=I R,[R]=\left[\frac{V}{I}\right]=\left[\frac{\text { Work done }}{\text { Charge } \times I}\right]$
$=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{A}^{2} \mathrm{~T}\right]}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$
(d)

According to Planck's hypothesis

$$
\begin{aligned}
& E=h v \\
\text { Or } & h
\end{aligned}
$$

Substituting the dimensions of energy E and frequency v, we get

$$
\begin{aligned}
& {[\mathrm{h}] } & =\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{T}^{-1}\right]} \\
\therefore & & {[\mathrm{h}]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right] }
\end{aligned}
$$

(a)

The dimension of $y=\frac{e^{2}}{4 \pi \varepsilon_{0 \mathrm{~h}}{ }^{c}}$
Putting the dimensions of

$$
\begin{gathered}
{[e]=[Q]=[\mathrm{AT}]} \\
{\left[\varepsilon_{0}\right]=\left[\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{4} \mathrm{~A}^{2}\right], h=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right], c=\left[\mathrm{LT}^{-1}\right]} \\
y=\frac{\left[\mathrm{A}^{2} \mathrm{~T}^{2}\right]}{\left[\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{4} \mathrm{~A}^{2}\right]\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]\left[\mathrm{LT}^{-1}\right]} \\
y=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]
\end{gathered}
$$

(b)

Volume $V=l \times b \times t$
$=12 \times 6 \times 2.45=176.4 \mathrm{~cm}^{3}$
$V=1.764 \times 10^{2} \mathrm{~cm}^{3}$
Since, the minimum number of significant figure is one in breadth, hence volume will also contain only one significant figure. Hence, $V=2 \times 10^{2} \mathrm{~cm}^{3}$
(d)

Percentage error in

$$
\begin{aligned}
& A=\left(2 \frac{\Delta^{a}}{a}+3 \frac{\Delta^{b}}{b}+\frac{\Delta^{c}}{c}+\frac{1}{2} \frac{\Delta^{d}}{d}\right) \times 100 \% \\
& =2 \times 1+3 \times 3+2+\frac{1}{2} \times 2 \\
& =2+9+2+1=14 \%
\end{aligned}
$$

(a)

The unit of $\frac{1}{2} \varepsilon E^{2}=\frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}\left(\frac{\mathrm{~N}}{\mathrm{C}}\right)^{2}$
$=\frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \frac{\mathrm{~N}^{2}}{\mathrm{C}^{2}}=\frac{\mathrm{N}}{\mathrm{m}^{2}}=\frac{\mathrm{Nm}}{\mathrm{m}^{3}}$
$=\frac{\mathrm{J}}{\mathrm{m}^{3}}=$ energy density
(d)
$v=a t+b t^{2}$
$[v]=\left[b t^{2}\right]$ or $L T^{-1}=b T^{2} \Rightarrow[b]=\left[L T^{-3}\right]$
(b)
$6 \times 10^{-5}=60 \times 10^{-6}=60$ microns

(b)

Surface tension $=\frac{\text { Force }}{\text { Length }}=$ newton $/$ metre
(d)

$$
C=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} \Rightarrow \frac{1}{\mu_{0} \varepsilon_{0}}=c^{2}=\left[L^{2} T^{-2}\right]
$$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	B	D	D	B	D	B	D	C	C	D	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	C	A	B	D	A	A	D	B	B	D	

