

CLASS : XITH SUBJECT : PHYSICS DATE : DPP NO. : 2

## **Topic :- UNITS AND MEASUREMENTS**

| 1. | When a wave traverses a medium, the displacement of a particle located at $x$ at a time $t$ is given by $y = a\sin(bt - cx)$ , where $a$ , $b$ and $c$ are constants of the wave. Which of the following is a quantity with dimensions  a) $\frac{y}{a}$ b) $bt$ c) $cx$ d) $\frac{b}{c}$ |                                                                  |                                                                               |                                         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------|
|    | u                                                                                                                                                                                                                                                                                         | ,                                                                | e, ex                                                                         |                                         |
| 2. | Identify the pair whose a) Torque and work                                                                                                                                                                                                                                                | b) Stress and energy                                             | c) Force and stress                                                           | d) Force and work                       |
| 3. | The equation $(P + \frac{a}{V^2})$ . $(V - b) = \text{constant.}$ The unit of $a$ is                                                                                                                                                                                                      |                                                                  |                                                                               |                                         |
|    | a) Dyne $\times$ cm <sup>5</sup>                                                                                                                                                                                                                                                          | b) Dyne $\times cm^4$                                            | c) Dyne $\times$ cm <sup>3</sup>                                              | d) Dyne $\times$ cm <sup>2</sup>        |
| 4. | <del>-</del>                                                                                                                                                                                                                                                                              | inductance, capacitance resent dimensions of fre $b)\frac{R}{L}$ | -                                                                             | vely, then which of the $d)\frac{c}{L}$ |
| 5. | If the units of mass, length and time are doubled a) Doubled c) Quadrupled                                                                                                                                                                                                                |                                                                  | ed, unit of angular momentum will be b) Tripled d) 8 times the original value |                                         |
| 6. | The length of a simple pendulum is about 100 cm known to an accuracy of 1 mm. Its period o oscillation is 2s determined by measuring the time for 100 oscillations using a clock of 0.1 s resolution. What is the accuracy in the determined value of g?                                  |                                                                  |                                                                               |                                         |
|    | a) 0.2%                                                                                                                                                                                                                                                                                   | b) 0.5%                                                          | c) 0.1%                                                                       | d) 2%                                   |
| 7. | Temperature can be expressed as a derived qua<br>a) Length and mass<br>c) Length, mass and time                                                                                                                                                                                           |                                                                  | antity in terms of any of the following b) Mass and time d) None of these     |                                         |

- 8. A small steel ball of radius r is allowed to fall under gravity through a column of a viscous liquid of coefficient of viscosity  $\eta$ . After some time the velocity of the ball attains a constant value known as terminal velocity  $v_T$ . The terminal velocity depends on (i) the mass of the ball  $m_t$  (ii)  $\eta_t$ , (iii) r and (iv) acceleration due to gravity g. Which of the following relations is dimensionally
  - a)  $v_T \propto \frac{mg}{nr}$
- b)  $v_T \propto \frac{\eta r}{ma}$
- c)  $v_T \propto \eta r m g$  d)  $v_T \propto \frac{mgr}{n}$
- 9. The measured mass and volume of a body are 23.42 g and 4.9 cm<sup>3</sup> respectively with possible error 0.01 g and 0.1 cm<sup>3</sup>. The maximum error in density is nearly
  - a) 0.2%
- b) 2%
- c) 5%

- d)10%
- 10. A physical quantity *A* is related to four observations *a,b,c* and *d* as follows,  $=\frac{a^2b^3}{c\cdot \sqrt{d}}$ . The percentage error of measurement in *a,b,c* and *d* are 1%, 3%, 2% and 2% respectively. What is the percentage error in the quantity A
  - a) 12%
- b) 7%
- c) 5%

d) 14%

- 11. The unit of Wien's constant *b* is
  - a)  $Wm^{-2}K^{-4}$
- b)  $m^{-1}K^{-1}$
- c) Wm<sup>2</sup>
- d) MK

- 12. Young's modulus of a material has the same units as
  - a) Pressure
- b) Strain
- c) Compressibility
- d) Force
- 13. Which of the following physical quantities has neither dimensions nor unit?
  - a) Angle

b) Luminous intensity

c) Coefficient of friction

- d) Current
- 14. In the relation  $y = a\cos(\omega t \cdot kx)$ , the dimensional formula for k is
  - a)  $[M^0L^{-1}T^{-1}]$
- b)  $[M^0LT^{-1}]$
- c)  $[M^0L^{-1}T^0]$
- d)  $[M^0LT]$

- 15. The dimensional formula for the magnetic field is
  - a)  $[MT^{-2}A^{-1}]$
- b)  $[ML^2T^{-1}A^{-2}]$
- c)  $[MT^{-2}A^{-2}]$
- d)  $[MT^{-1}A^{-2}]$

- 16.  $Dyne/cm^2$  is not a unit of
  - a) Pressure
- b) Stress
- c) Strain
- d) Young's modulus
- 17. One side of a cubical block is measured with the help of a vernier callipers of vernier constant 0.01 cm. This side comes out to be 1.23 cm. What is the percentage error in the measurement of
  - a)  $\frac{1.23}{0.01} \times 100$

- b)  $\frac{0.01}{1.23} \times 100$  c)  $2 \times \frac{0.01}{1.23} \times 100$  d)  $3 \times \frac{0.01}{1.23} \times 100$

- 18. Ampere hour is a unit of
  - a) Quantity of electricity

b) Strength of electric current

c) Power

- d) Energy
- 19. The velocity v (in cm/sec) of a particle is given in terms of time t(in sec) by the relation  $v = at + \frac{b}{t+c}$ ; the dimensions of a, b and c are a)  $a = L^2$ , b = T,  $c = LT^2$

a) 
$$a = L^2$$
,  $b = T$ ,  $c = LT^2$ 

b) 
$$a = LT^{2}$$
,  $b = LT$ ,  $c = L$ 

c) 
$$a = LT^2$$
,  $b = L$ ,  $c = T$ 

d) 
$$a = L, b = LT, c = T^2$$

- 20. The potential energy of a particle varies with distance x from a fixed origin as  $U = \left(\frac{A\sqrt{X}}{x+B}\right)$ ; where *A* and *B* are constants. The dimensions of *AB* are
  - a)  $[ML^{5/2}T^{-2}]$
- b)  $[ML^2T^{-2}]$
- c)  $[M^{3/2}L^{3/2}T^{-2}]$
- d)  $[ML^{7/2}T^{-2}]$

