CLASS : XITh
DATE :

Topic :-UNITS AND MEASUREMENTS

1
(d)

Given equation , $y=a \sin \left(b t_{-} c x\right)$
Comparing the given equation with general wave equation
$y=a \sin \left(\frac{2 \pi t}{T}-\frac{2 \pi x}{\lambda}\right)$,
We get $b=\frac{2 \pi}{T}, c=\frac{2 \pi}{\lambda}$
Dimension of $\frac{b}{c}$
$=\frac{2 \pi / T}{2 \pi / \lambda}=\left[L T^{-1}\right]$, and other three quantity is dimensionless
3

4
(b)

Units of a and $P V^{2}$ are same and equal to dyne $\times \mathrm{cm}^{4}$
(d)
$f=\frac{1}{2 \pi \sqrt{L C}}$
$\therefore\left(\frac{C}{L}\right)$ does not represent the dimensions of frequency
5
(c)
$P_{1}=\left[M L^{2} T^{-1}\right]$
$D_{2}=\left[(2 M)(2 L)^{2}(2 T)^{-1}\right]$
$P_{2}=4\left[M L^{2} T^{-1}\right]=4 P_{1}$
6
(a)

Time period of a simple pendulum
$T=2 \pi \sqrt{\frac{L}{8}}$
Or $g=\frac{4 \pi^{2} L}{T^{2}}$
Differentiating Eq. (i), we have
$\frac{\Delta g}{g}=\frac{\Delta L}{L}+\frac{2 \Delta T}{T}$
Given, $\mathrm{L}=100 \mathrm{~cm}, \mathrm{~T}=2 \mathrm{~s}$,
$\Delta T=\frac{0.1}{100}=0.001 \mathrm{~s}$,
$\Delta L=1 \mathrm{~mm}=0.1 \mathrm{~cm}$
Substituting the in Eq. (ii), we have

$$
\begin{aligned}
& \therefore\left|\frac{\Delta g}{g}\right|_{\max }=\frac{\Delta^{L}}{L}+\frac{2 \Delta T}{T} \\
& =\frac{0.1}{100}+2 \times \frac{0.001}{2}
\end{aligned}
$$

Thus, maximum percentage eror
$\left|\frac{\Delta g}{g}\right|_{\max } \times 100=\left(\frac{0.1}{100} \times 100\right)+\left(\frac{2 \times 0.001}{2} \times 100\right)$
$=0.1 \%+0.1 \%=0.2 \%$
(d)

Because temperature is a fundamental quantity
(a)

By submitting dimension of each quantity in R.H.S. of option (a) we get
$\left[\frac{m g}{\eta r}\right]=\left[\frac{M \times L T^{-2}}{M L^{-1} T^{-1} \times L}\right]=\left[L T^{-1}\right]$
This option gives the dimension of velocity
(b)

Percentage error in mass $=\frac{0.01}{23.42} \times 100=0.04$
Percentage error in volume $=\frac{0.1}{4.9} \times 100=2.04$
Adding up the percentage errors, we get nearly 2%.
(d)

Percentage error in A
$=\left(2 \times 1+3 \times 3+1 \times 2+\frac{1}{2} \times 2\right) \%=14 \%$
(d)

According to Wien's law the product of wavelength corresponding to maximum intensity of radiation and temperature of body (in Kelvin) is constant $i e, \lambda_{m} T=b=$ constant, where b is Wien's constant and has value $2.89 \times 10^{-3} \mathrm{~m}-\mathrm{K}$.
(a)
$Y=\frac{\text { Stress }}{\text { Strain }}=\frac{\text { Force/Area }}{\text { Dimensionless }} \Rightarrow Y \equiv$ Pressure
(c)

Coefficient o friction $=\frac{\text { Applied force }}{\text { Normal reactiom }}$
$=\frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{MLT}^{-2}\right]}=$ no dimensions
Unit $=\frac{\mathrm{N}}{\mathrm{N}}=$ no unit
(c)
[$k x$] $=$ Dimension of $\omega t=$ (dimensionless)
Hence $K=\frac{1}{X}=\frac{1}{L}=\left[L^{-1}\right] \therefore[K]=\left[L^{-1}\right]$
(a)

Magnetic field $=\frac{\text { Force }}{\text { Charge } \times \text { velocity }}$

$$
=\frac{\left[\mathrm{MLT}^{-2}\right]}{[\mathrm{AT}]\left[\mathrm{LT}^{-1}\right]}=\left[\mathrm{MA}^{-1} \mathrm{~T}^{-2}\right]
$$

(c)

Percentage error in measurement of a side
$=\frac{0.01}{1.23} \times 100$
Percentage error in measurement of area
$=2 \times \frac{0.01}{1.23} \times 100$
(a)

Charge $=$ current \times time
(c)

From the principle of dimensional homogenity $[v]=[a t] \Rightarrow[a]=\left[L T^{-2}\right]$. Similarly $[b]=[L]$ and $[c]=[T]$
(d)

Given, $\quad U=\frac{A \sqrt{x}}{x+B}$
Dimensions of $U=$ dimensions of potential energy

$$
=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]
$$

From Eq. (i),
Dimensions of $B=$ dimensions of $x=\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right]$
\therefore Dimensions of A

$$
\begin{aligned}
& =\frac{\text { dimensions of } U \times \text { dimensions of }(x+B)}{\text { dimension of } \sqrt{x}} \\
& =\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right]}{\left[\mathrm{M}^{0} \mathrm{~L}^{1 / 2} \mathrm{~T}^{0}\right]} \\
& =\left[\mathrm{ML}^{5 / 2} \mathrm{~T}^{-2}\right]
\end{aligned}
$$

Hence, dimensions of $A B$

$$
\begin{aligned}
& =\left[\mathrm{ML}^{5 / 2} \mathrm{~T}^{-2}\right]\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right] \\
& =\left[\mathrm{ML}^{7 / 2} \mathrm{~T}^{-2}\right]
\end{aligned}
$$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	D	A	B	D	C	A	D	A	B	D	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	D	A	C	C	A	C	C	A	C	D	

