

CLASS : XITH DATE : SUBJECT : PHYSICS DPP NO. : 10

d) $\left(\frac{G_{\rm h}}{c^5}\right)^{1/2}$

Topic :- UNITS AND MEASUREMENTS

- A resistor of 4 kΩ with tolerance 10% is connected in parallel with a resistor of 6 kW with tolerance 100%. The tolerance of the parallel combination is nearly

 a) 10%
 b) 20%
 c) 30%
 d) 40%
- 2. An important milestone in the evolution of the universe just after the Big Bang is the Planck time t_P , the value of which depends on three fundamental constants-speed c of light in vacuum, gravitational constant G and Planck's constant h. Then, $t_P \propto$

c) $\frac{G_{\rm h}}{c^5}$

- a) Ghc⁵
- 3. IF *L*, *C* and *R* denote the inductance, capacitance and resistance respectively, the dimensional formula for $C^2 LR$ is a) $[ML^{-2}T^{-1}I^0]$ b) $[M^0L^0T^3I^0]$ c) $[M^{-1}L^{-2}T^6I^2]$ d) $[M^0L^0T^2I^0]$

b) $\frac{c^5}{G_h}$

- 4. The unit of *e.m.f.* is
 a) *Joule*b) *Joule coulomb*c) *Volt coulomb*d) *Joule/coulomb*
- 5. Students I, II and III perform an experiment for measuring the acceleration due to gravity (g) using a simple pendulum. They use different lengths of the pendulum and/or record time for different number of oscillations. The observations are shown in the table Least count for length = 0.1 cmLeast count for time = 0.1 sStudent Length of the pendulum (*cm*) Numberofoscillation(*n*) Total time for (*s*) Time period (*s*) (noscillations Ι 64.0 8 128.0 16.0 I 64.0 4 64.0 16.0 III 20.0 4 36.0 9.0 If $E_{\rm I}$, $E_{\rm II}$ and $E_{\rm III}$ are the percentage errors in g, *i.e.*, $\left(\frac{\Delta g}{g} \times 100\right)$ for students I, II and III,

respectively

a) $E_{I} = 0$ b) E_{I} is minimum c) $E_{I} = E_{II}$ d) E_{II} is maximum

6.	One million electron v_{i}	olt (1 MeV) is equal to		7	
	a) 10 ⁵ <i>eV</i>	b) 10° <i>eV</i>	c) $10^4 eV$	d)10' eV	
7.	If the units of <i>M</i> and <i>L</i> a) 3 times	are increased three time b) 6 times	es, then the unit of energ c) 27 times	y will be increased by d)81 times	
8.	The velocity of a body is given by the equation $v = \frac{b}{t} + ct^2 + dt^2$				
	The dimensional form: a) [M ⁰ LT ⁰]	ula of <i>b</i> is b) [ML ⁰ T ⁰]	c) [M ⁰ L ⁰ T]	d)[MLT ⁻¹]	
9.	Unit of magnetic moment is				
	a) <i>Ampere - metre</i> ²	b) <i>Ampere – metre</i>	c) Weber – metre ²	d)Weber/metre	
10.	The resistance $R = \frac{V}{i}$ where $V = 100 \pm 5$ volts and $i = 10 \pm 0.2$ amperes. What is the total error in R				
	a) 5%	b) 7%	c) 5.2%	d) $\frac{5}{2}$ %	
11.	The least count of a sto to be 25 s. The percent a) 8%	op watch is 0.2 s. The tim age error in the measure b) 1.8%	ne of 20 oscillations of a ement of time will be c) 0.8%	pendulum is measured d)0.1%	
12.	If <i>C</i> is capacitance and a) Work	<i>q</i> is charge, then the din b) Angular momentum	nension of <i>q²/C</i> is same a c) Force	as that of d)Torque	
13.	13. The dimension of $\frac{1}{2}\epsilon_0 E^2$, where ϵ_0 is permittivity of free space and <i>E</i> is electric field, is				
	a) <i>MLT</i> ¹	b) ML^2T^{-2}	c) $ML^{-1}T^{-2}$	d) ML^2T^{-1}	
14. If <i>L</i> , <i>C</i> and <i>R</i> denote inductance, capacitance and resistance respectively, then which of the following combination has the dimension of time?					
	a) $\frac{c}{L}$	b) $\frac{1}{RC}$	c) $\frac{L}{R}$	d) $\frac{RL}{C}$	
15.	15. If <i>E</i> , <i>m</i> , <i>J</i> and <i>G</i> represent energy, mass, angular momentum and gravitational constant respectively, then the dimensional formula of EJ^2/m^5G^2 is				
	a) [MLT ⁻²]	b) [M ⁰ L ⁰ T]	c) $[M^0 L^2 T^0]$	d) Dimensionless	
16.	5. If the error in the measurement of radius of a sphere is 2%, then the error in the determination of volume of the sphere will be				
	a) 8%	b)2%	c) 4%	d)6%	

17. The density of a solid ball is to be determined in an experiment. The diameter of the ball is measured with a screw gauge, whose pitch is 0.5 *mm* and there are 50 divisions on the circular scale. The reading on the main scale is 2.5 *mm* and that on the circular scale is 20 divisions. If the measured mass of the ball has a relative error of 2%, the relative percentage error in the density is

18. If force (*F*), length (*L*) and time (*T*) are assumed to be the fundamental units, then the dimensional formula of the mass will be

a) $[FL^{-1}T^2]$ b) $[FL^{-1}T^{-2}]$ c) $[FL^{-1}T^{-1}]$ d) $[FL^2T^{-2}]$

19. A student performs an experiment for determination of $g = \frac{4\pi^2 l}{T^2}$ and he commits an error of Δ *l*. For that he takes the time of *n* oscillations with the stop watch of least count ΔT and he

commits a human error of 0.1 sec. For which of the following data, the measurement of g will be most accurate

