CLASS : XITh
SUBJECT : PHYSICS
DATE:

Topic :- UNITS AND MEASUREMENTS

1. A resistor of $4 \mathrm{k} \Omega$ with tolerance 10% is connected in parallel with a resistor of 6 kW with tolerance 100%. The tolerance of the parallel combination is nearly
a) 10%
b) 20%
c) 30%
d) 40%
2. An important milestone in the evolution of the universe just after the Big Bang is the Planck time t_{P}, the value of which depends on three fundamental constants-speed c of light in vacuum, gravitational constant G and Planck's constant h. Then, $t_{P} \propto$
a) $G \mathrm{~h} c^{5}$
b) $\frac{c^{5}}{G_{\mathrm{h}}}$
c) $\frac{G_{\mathrm{h}}}{c^{5}}$
d) $\left(\frac{G_{\mathrm{h}}}{c^{5}}\right)^{1 / 2}$
3. IF L, C and R denote the inductance, capacitance and resistance respectively, the dimensional formula for $C^{2} L R$ is
a) $\left[M L^{-2} T^{-1} I^{0}\right]$
b) $\left[M^{0} L^{0} T^{3} I^{0}\right]$
c) $\left[M^{-1} L^{-2} T^{6} I^{2}\right]$
d) $\left[M^{0} L^{0} T^{2} I^{0}\right]$
4. The unit of e.m.f. is
a) Joule
b)Joule - coulomb
c) Volt - coulomb
d) Joule/coulomb
5. Students I, II and III perform an experiment for measuring the acceleration due to gravity (g) using a simple pendulum. They use different lengths of the pendulum and/or record time for different number of oscillations. The observations are shown in the table Least count for length $=0.1 \mathrm{~cm}$
Least count for time $=0.1 \mathrm{~s}$
Student Length of the pendulum (cm) Numberofoscillation $(n) \quad$ Total time for

(noscillations					
I	(s)	Time	period	(s)	
I	64.0	8	128.0	16.0	
I	64.0	4	64.0	16.0	
III	20.0	4	36.0	9.0	

If $E_{\mathrm{I}}, E_{\mathrm{II}}$ and $E_{\text {III }}$ are the percentage errors in g, i.e., $\left(\frac{\Delta g}{g} \times 100\right)$ for students I, II and III, respectively
a) $E_{\mathrm{I}}=0$
b) E_{I} is minimum
c) $E_{\text {I }}=E_{\text {II }}$
d) $E_{\text {II }}$ is maximum
6. One million electron volt $(1 \mathrm{MeV})$ is equal to
a) $10^{5} \mathrm{eV}$
b) $10^{6} \mathrm{eV}$
c) $10^{4} \mathrm{eV}$
d) $10^{7} \mathrm{eV}$
7. If the units of M and L are increased three times, then the unit of energy will be increased by
a) 3 times
b) 6 times
c) 27 times
d) 81 times
8. The velocity of a body is given by the equation $v=\frac{b}{t}+c t^{2}+d t^{2}$ The dimensional formula of b is
a) $\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right]$
b) $\left[\mathrm{ML}^{0} \mathrm{~T}^{0}\right]$
c) $\left[M^{0} \mathrm{~L}^{0} \mathrm{~T}\right]$
d) $\left[\mathrm{MLT}^{-1}\right]$
9. Unit of magnetic moment is
a) Ampere - metre ${ }^{2}$
b) Ampere - metre
c) Weber - metre ${ }^{2}$
d) Weber/metre
10. The resistance $R=\frac{V}{i}$ where $V=100 \pm 5$ volts and $i=10 \pm 0.2$ amperes. What is the total error in R
a) 5%
b) 7%
c) 5.2%
d) $\frac{5}{2} \%$
11. The least count of a stop watch is 0.2 s . The time of 20 oscillations of a pendulum is measured to be 25 s . The percentage error in the measurement of time will be
a) 8%
b) 1.8%
c) 0.8%
d) 0.1%
12. If C is capacitance and q is charge, then the dimension of q^{2} / C is same as that of
a) Work
b) Angular momentum
c) Force
d) Torque
13. The dimension of $\frac{1}{2} \epsilon_{0} E^{2}$, where ϵ_{0} is permittivity of free space and E is electric field, is
a) $M L T^{1}$
b) $M L^{2} T^{-2}$
c) $M L^{-1} T^{-2}$
d) $M L^{2} T^{-1}$
14. If L, C and R denote inductance, capacitance and resistance respectively, then which of the following combination has the dimension of time?
a) $\frac{C}{L}$
b) $\frac{1}{R C}$
c) $\frac{L}{R}$
d) $\frac{R L}{C}$
15. If E, m, J and G represent energy, mass, angular momentum and gravitational constant respectively, then the dimensional formula of $E J^{2} / m^{5} G^{2}$ is
a) $\left[\mathrm{MLT}^{-2}\right]$
b) $\left[M^{0} L^{0} \mathrm{~T}\right]$
c) $\left[M^{0} L^{2} T^{0}\right]$
d) Dimensionless
16. If the error in the measurement of radius of a sphere is 2%, then the error in the determination of volume of the sphere will be
a) 8%
b) 2%
c) 4%
d) 6%
17. The density of a solid ball is to be determined in an experiment. The diameter of the ball is measured with a screw gauge, whose pitch is 0.5 mm and there are 50 divisions on the circular scale. The reading on the main scale is 2.5 mm and that on the circular scale is 20 divisions. If the measured mass of the ball has a relative error of 2%, the relative percentage error in the density is
a) 0.9%
b) 2.4%
c) 3.1%
d) 4.2%
18. If force (F), length (L) and time (T) are assumed to be the fundamental units, then the dimensional formula of the mass will be
a) $\left[\mathrm{FL}^{-1} \mathrm{~T}^{2}\right]$
b) $\left[\mathrm{FL}^{-1} \mathrm{~T}^{-2}\right]$
c) $\left[\mathrm{FL}^{-1} \mathrm{~T}^{-1}\right]$
d) $\left[\mathrm{FL}^{2} \mathrm{~T}^{-2}\right]$
19. A student performs an experiment for determination of $g=\frac{4 \pi^{2} l}{T^{2}}$ and he commits an error of Δ l. For that he takes the time of n oscillations with the stop watch of least count ΔT and he commits a human error of 0.1 sec . For which of the following data, the measurement of g will be most accurate
$\Delta l \quad \Delta T \quad n \quad$ Ampli. of oscill.
a) $5 \mathrm{~mm} \quad 0.2 \mathrm{sec} \quad 10 \quad 5 \mathrm{~mm}$
b) $5 \mathrm{~mm} \quad 0.2 \mathrm{sec} \quad 20 \quad 5 \mathrm{~mm}$
c) $5 \mathrm{~mm} \quad 0.1 \mathrm{sec} \quad 20 \quad 1 \mathrm{~mm}$
d) $1 \mathrm{~mm} \quad 0.1 \mathrm{sec} \quad 50 \quad 1 \mathrm{~mm}$
20. Write dimensional formula for the intensity of radiation
a) $M^{1} L^{0} T^{3}$
b) $M^{1} L^{0} T^{-3}$
c) $M^{1} L^{2} T^{-2}$
d) $M^{1} L^{2} T^{-3}$

