CLASS : XITh
Solutions

Topic :-UNITS AND MEASUREMENTS

1
(c)
$R_{s}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$,
$\frac{\Delta^{R_{s}}}{R_{s}} \times 100$
$=\frac{\Delta R_{1}}{R_{1}} \times 100+\frac{\Delta R_{2}}{R_{2}} \times 100+\frac{\Delta\left(R_{1}+R_{2}\right)}{R_{1}+R_{2}}=100$
Now, $\quad \Delta R_{1}=\frac{10}{100} \times 4 \mathrm{k} \Omega=0.4 \mathrm{k} \Omega$,

$$
\Delta R_{2}=\frac{10}{100} \times 6 \mathrm{k} \Omega=0.6 \mathrm{k} \Omega
$$

Again, $\frac{\Delta R_{s}}{R_{s}} \times 100=\frac{0.4}{4} \times 100+\frac{0.6}{6} \times 100$
$+\frac{0.4+0.6}{10} \times 100$
$=10+10+10=30$
(d)

Note carefully that every alterative has $G \mathrm{~h}$ and c^{5}.
$[G \mathrm{~h}]=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]=\left[\mathrm{M}^{0} \mathrm{~L}^{5} \mathrm{~T}^{3}\right]$
$[c]=\left[\mathrm{LT}^{-1}\right]$
$\therefore \quad\left(\frac{G_{\mathrm{h}}}{c^{5}}\right)^{1 / 2}=[\mathrm{T}]$
(b)
$C^{2} L R=\left[C^{2} L^{2}\right] \times\left[\frac{R}{L}\right]=\left[T^{4}\right] \times\left[\frac{1}{T}\right]=\left[T^{3}\right]$
As $\left[\frac{L}{R}\right]=T$ and $\sqrt{L C}=T$
4
(d)

Unit of e.m.f. $=$ volt $=$ joule $/$ coulomb
5
(b)
\% error in $g=\frac{\Delta g}{g} \times 100=\left(\frac{\Delta l}{l}\right) \times 100+2\left(\frac{\Delta T}{T}\right) \times 100$
$E_{I}=\frac{0.1}{64} \times 100+2\left(\frac{0.1}{128}\right) \times 100=0.3125 \%$
$E_{I I}=\frac{0.1}{64} \times 100+2\left(\frac{0.1}{64}\right) \times 100=0.4687 \%$
$E_{I I I}=\frac{0.1}{20} \times 100+2\left(\frac{0.1}{36}\right) \times 100=1.055 \%$
(b)
$1 \mathrm{MeV}=10^{6} \mathrm{eV}$
(c)
[Energy $]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$. Increasing M and L by a factor of 3 energy is increased 27 times.
(a)

Dimensionally. $\left[\frac{b}{t}\right]=[v]$ or $[b]=[v t]=[L]$.
(a)
$M=$ Pole strength \times length
$=a m p-$ metre \times metre $=a m p-$ metre 2
(b)
$\therefore\left(\frac{\Delta^{R}}{R} \times 100\right)_{\text {max }}=\frac{\Delta^{V}}{V} \times 100+\frac{\Delta^{I}}{I} \times 100$
$=\frac{5}{100} \times 100+\frac{0.2}{10} \times 100=(5+2) \%=7 \%$
(c)
$\frac{0.2}{25} \times 100=0.8$
(c)
$\left[\frac{1}{2} \in{ }_{0} E^{2}\right]=$ [Energy density]
$=\frac{M L^{2} T^{-2}}{L^{3}}=M L^{-1} T^{-2}$
(c)

Dimensions of L and R

$$
\begin{gathered}
{[R]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]} \\
{[L]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]} \\
{\left[\frac{L}{R}\right]=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]}} \\
=[\mathrm{T}]
\end{gathered}
$$

(d)
$\frac{[E][J]^{2}}{[M]^{5}[G]^{2}} \frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]^{2}}{\left[\mathrm{M}^{5}\right]\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]^{2}}=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
(d)

As $v=\frac{4}{3} \pi r^{3}$
$\frac{d v}{v}=3\left(\frac{d r}{r}\right)$
\therefore Percentage error in determination of volume $=3$
(Percentage error in measurement of radius) $=3(2 \%)=6 \%$

20
(c)

Least count $=\frac{0.5}{50}=0.01 \mathrm{~mm}$
Diameter of ball $D=2.5 \mathrm{~mm}+(20)(0.01)$
$D=2.7 \mathrm{~mm}$
$\rho=\frac{M}{v o l}=\frac{M}{\frac{4}{3} \pi\left(\frac{D}{2}\right)^{3}} \Rightarrow\left(\frac{\Delta \rho}{\rho}\right)_{\max }=\frac{\Delta^{M}}{M}+3 \frac{\Delta D}{D}$
$\left(\frac{\Delta \rho}{\rho}\right)_{\max }=2 \%+3\left(\frac{0.01}{2.7}\right) \times 100 \% \Rightarrow \frac{\Delta \rho}{\rho}=3.1 \%$

(a)

From Newton's second law
Force $(F)=$ Mass $(M) \times$ acceleration
Dimensions of $[F]=\left[\mathrm{MLT}^{-2}\right]$

$$
\therefore \quad[M]=\left[\mathrm{FL}^{-1} \mathrm{~T}^{2}\right]
$$

(d)

For best results amplitude of oscillation should be as small as possible and more oscillations should be taken
(b)

Intensity of radiation $=\frac{\text { Radiation Energy }}{\text { Area } \times \text { time }}$
$\Rightarrow I=\frac{\left[M L^{2} T^{-2}\right]}{\left[L^{2} \times T\right]}=\left[M L^{0} T^{-3}\right]$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	C	D	B	D	B	B	C	A	A	B	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	C	A	C	C	D	D	C	A	D	B	

