SUBJECT : PHYSICS CLASS : XITH Solutions DATE: DPP NO.:1 Topic :- UNITS AND MEASUREMEN (c) From $h = ut + \frac{1}{2}gt^2$ $h = 0 + \frac{1}{2} \times 9.8 \times (2)^2 = 19.6 m$ $\frac{\Delta \mathbf{h}}{\mathbf{h}} = \pm 2 \frac{\Delta t}{t} \qquad [:: a = g = \text{constant}]$ $=\pm 2\left(\frac{0.1}{2}\right)=\pm \frac{1}{10}$ $\therefore \Delta h = \pm \frac{h}{10} = \pm \frac{19.6}{10} = \pm 1.96 m$ (a) Given, $W = \frac{1}{2}kx^2$ Writing the dimensions on both sides $[ML^{2}T^{-2}] = k[M^{0}L^{2}T^{0}]$ \therefore Dimensions of $k = [MT^{-2}] = [ML^0T^{-2}]$ (a)

Given, m = 3.513 kg and v = 5.00 ms⁻¹

So, momentum, p = mv = 17.565

As the number of significant digits in m is 4 and v is 3, so, p must have 3 significant digits

$$p = 17.6 \text{ kgms}^{-1}$$

4 **(d)**

1

2

3

Modulas of rigidity = $\frac{\text{Shear stress}}{\text{Shear strain}} = [ML^{-1}T^{-2}]$

5 (c)

The unit of physical quantity obtained by the line intergral of electric field is JC⁻¹.

$$F = \frac{Gm_1m_2}{d^2}$$
$$\Rightarrow G = \frac{Fd^2}{m_1m_2}$$

(b)

$$[G] = \frac{[MLT^{-2}][L^2]}{[M^2]} = [M^{-1}L^3T^2]$$

Moment of inertia $I = mK^2 = [ML^2]$

(a)

$$\text{Stress} = \frac{\text{Force}}{\text{Area}} = \frac{N}{m^2}$$

8

$$n_{1}u_{1} = n_{2}u_{2}$$

$$n_{2} = \frac{n_{1}u_{1}}{u_{2}}$$

$$= \frac{170.474L}{M^{3}}$$

$$= \frac{170.474 \times 10^{-3}M^{3}}{M^{3}}$$

$$= 0.170474$$
(c)

9

Intensity (I) = $\frac{\text{Energy}}{\text{Area} \times \text{time}}$

10 **(d)**

By the principle of dimensions homogeneity

$$F = at^{-1}$$

$$[MLT^{-2}] = a[T^{-1}]$$
$$a = [MLT^{-1}]$$

Similarly for $b = [MLT^{-4}]$

11 **(a)**

Let radius of gyration $[k] \propto [h]^{x}[c]^{y}[G]^{z}$ By substituting the dimension of [k] = [L] $[h] = [ML^{2}T^{-1}]$ $[c] = [LT^{-1}]$

 $[G] = [M^{-1}L^3T^{-2}]$ And by comparing the power of both sides We can get x = 1/2, y = -3/2, z = 1/2Therefore dimension of radius of gyration is $[h]^{1/2}[c]^{-3/2}[G]^{1/2}$ 12 (a) Here, Mass of a body, $M = 5.00 \pm 0.05 kg$ Volume of a body, $V = 1.00 \pm 0.05 m^3$ Density, $\rho = \frac{M}{V}$ Relative error in density is $\frac{\Delta \rho}{\rho} = \frac{\Delta M}{M} + \frac{\Delta V}{V}$ Percentage error in density is $\frac{\Delta \rho}{\rho} \times 100 = \frac{\Delta M}{M} \times 100 + \frac{\Delta V}{V} \times 100$ $= \left(\frac{0.05}{5} \times 100\right) + \left(\frac{0.05}{1} \times 100\right) = 1\% + 5\% = 6\%$ 13 (c) Stefan's law is $E = \sigma(T^4) \Rightarrow \sigma - \frac{E}{T^4}$ where, $E = \frac{\text{Energy}}{\text{Area } \times \text{Time}} = \frac{\text{Watt}}{m^2}$ $\sigma = \frac{\text{Watt} \cdot m^{-2}}{\kappa^4} = Watt \cdot m^{-2}K^{-4}$ 14 (a) $y = a \sin(\omega t + kx).$ Here, ωt should be dimensionless $\therefore \ [\omega] = \left[\frac{1}{t}\right]$ $[\omega] = [M^0 L^0 T^{-1}]$ (c) Percentage error in $T = \frac{0.01}{1.26} \times 100 + \frac{0.01}{9.80} \times 100$ $+\frac{0.01}{1.45} \times 100$ = 0.8 + 0.1 + 0.7 = 1.616 (a) $\frac{R}{L} = \frac{V/I}{V \times T/I} = \frac{1}{T} = \text{Frequency}$ 18 (b) Pressure $= \frac{\text{Force}}{\text{Area}} = \frac{\text{Energy}}{\text{Volume}} = ML^{-1}T^{-2}$ 19 (b)

15

The dimension of frequency $(f) = [T^{-1}]$

The dimension of
$$\left(\frac{R}{L}\right) = \frac{[ML^2T^{-3}A^{-2}]}{[ML^2T^2A^{-2}]}$$
$$= \left[\frac{1}{T}\right]$$
$$= [T^{-1}]$$

20

Area of rectangle

A = lb

(a)

 $= 10.5 \times 2.1$

 $= 22.05 \ cm^2$

Minimum possible measurement of scale =0.1 cm

So, area measured by scale = $22.0cm^2$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
Α.	С	А	A	D	С	В	С	А	С	D
Q.	11	12	13	14	15	16	17	18	19	20
Α.	A	А	С	A	С	A	В	В	В	А

