CLASS : XITh
Solutions

Topic :-UNITS AND MEASUREMENTS

1
(c)

From $\mathrm{h}=u t+\frac{1}{2} g t^{2}$
$h=0+\frac{1}{2} \times 9.8 \times(2)^{2}=19.6 \mathrm{~m}$
$\frac{\Delta \mathrm{h}}{\mathrm{h}}= \pm 2 \frac{\Delta t}{t} \quad[\because a=g=$ constant $]$
$= \pm 2\left(\frac{0.1}{2}\right)= \pm \frac{1}{10}$
$\therefore \Delta h= \pm \frac{\mathrm{h}}{10}= \pm \frac{19.6}{10}= \pm 1.96 \mathrm{~m}$

2
(a)

Given, $\quad W=\frac{1}{2} k x^{2}$
Writing the dimensions on both sides

$$
\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]=k\left[\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{0}\right]
$$

\therefore Dimensions of $k=\left[\mathrm{MT}^{-2}\right]=\left[\mathrm{ML}^{0} \mathrm{~T}^{-2}\right]$
(a)

Given, $m=3.513 \mathrm{~kg}$ and $v=5.00 \mathrm{~ms}^{-1}$
So, momentum, $p=m v=17.565$

$$
p=17.6 \mathrm{kgms}^{-1}
$$

(d)

Modulas of rigidity $=\frac{\text { Shear stress }}{\text { Shear strain }}=\left[M L^{-1} T^{-2}\right]$
(c)

As the number of significant digits in m is 4 and v is 3 , so, p must have 3 significant digits

The unit of physical quantity obtained by the line intergral of electric field is JC^{-1}.

6
(b)
$F=\frac{G m_{1} m_{2}}{d^{2}}$
$\Rightarrow G=\frac{F d^{2}}{m_{1} m_{2}}$
$[G]=\frac{\left[\mathrm{MLT}^{-2}\right]\left[\mathrm{L}^{2}\right]}{\left[\mathrm{M}^{2}\right]}=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{2}\right]$
Moment of inertia $I=m K^{2}=\left[\mathrm{ML}^{2}\right]$

7

8
(c)

Stress $=\frac{\text { Force }}{\text { Area }}=\frac{N}{m^{2}}$
(a)

$$
\begin{aligned}
& n_{1} u_{1}=n_{2} u_{2} \\
& n_{2}=\frac{n_{1} u_{1}}{u_{2}} \\
& =\frac{170.474 L}{M^{3}} \\
& =\frac{170.474 \times 10^{-3} \mathrm{M}^{3}}{M^{3}} \\
& =0.170474
\end{aligned}
$$

(c)

Intensity $(I)=\frac{\text { Energy }}{\text { Area } \times \text { time }}$
(d)

$$
\begin{aligned}
F & =a t^{-1} \\
{\left[\mathrm{MLT}^{-2}\right] } & =a\left[\mathrm{~T}^{-1}\right] \\
a & =\left[\mathrm{MLT}^{-1}\right]
\end{aligned}
$$

Similarly for $b=\left[\right.$ MLT $\left.^{-4}\right]$
(a)

By the principle of dimensions homogeneity

Let radius of gyration $[k] \propto[\mathrm{h}]^{x}[c]^{y}[G]^{z}$
By substituting the dimension of $[k]=[L]$
$[\mathrm{h}]=\left[M L^{2} T^{-1}\right]$
$[c]=\left[L T^{-1}\right]$
$[G]=\left[M^{-1} L^{3} T^{-2}\right]$
And by comparing the power of both sides
We can get $x=1 / 2, y=-3 / 2, z=1 / 2$
Therefore dimension of radius of gyration is
$[\mathrm{h}]^{1 / 2}[c]^{-3 / 2}[G]^{1 / 2}$
(a)

Here,
Mass of a body, $M=5.00 \pm 0.05 \mathrm{~kg}$
Volume of a body, $V=1.00 \pm 0.05 \mathrm{~m}^{3}$
Density, $\rho=\frac{M}{V}$
Relative error in density is
$\frac{\Delta \rho}{\rho}=\frac{\Delta^{M}}{M}+\frac{\Delta^{V}}{V}$
Percentage error in density is
$\frac{\Delta^{\rho}}{\rho} \times 100=\frac{\Delta^{M}}{M} \times 100+\frac{\Delta^{V}}{V} \times 100$
$=\left(\frac{0.05}{5} \times 100\right)+\left(\frac{0.05}{1} \times 100\right)=1 \%+5 \%=6 \%$
(c)

Stefan's law is $E=\sigma\left(T^{4}\right) \Rightarrow \sigma-\frac{E}{T^{4}}$
where, $E=\frac{\text { Energy }}{\text { Area } \times \text { Time }}=\frac{\text { Watt }}{\mathrm{m}^{2}}$
$\sigma=\frac{\text { Watt }-m^{-2}}{K^{4}}=$ Watt $-m^{-2} K^{-4}$
(a)
$y=a \sin (\omega t+k x)$.
Here, ωt should be dimensionless
$\therefore \quad[\omega]=\left[\frac{1}{t}\right]$
$[\omega]=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
(c)

Percentage error in $T=\frac{0.01}{1.26} \times 100+\frac{0.01}{9.80} \times 100$
$+\frac{0.01}{1.45} \times 100$
$=0.8+0.1+0.7=1.6$
(a)
$\frac{R}{L}=\frac{V / I}{V \times T / I}=\frac{1}{T}=$ Frequency
(b)

Pressure $=\frac{\text { Force }}{\text { Area }}=\frac{\text { Energy }}{\text { Volume }}=M L^{-1} T^{-2}$
(b)

The dimension of frequency $(f)=\left[\mathrm{T}^{-1}\right]$
The dimension of $\left(\frac{R}{L}\right)=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{2} \mathrm{~A}^{-2}\right]}$

$$
\begin{aligned}
& =\left[\frac{1}{T}\right] \\
& =\left[\mathrm{T}^{-1}\right]
\end{aligned}
$$

(a)

Area of rectangle
$A=l b$
$=10.5 \times 2.1$
$=22.05 \mathrm{~cm}^{2}$
Minimum possible measurement of scale $=0.1 \mathrm{~cm}$
So, area measured by scale $=22.0 \mathrm{~cm}^{2}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	C	A	A	D	C	B	C	A	C	D		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	A	A	C	A	C	A	B	B	B	A		

