CLASS : XITH
Solutions
SUBJECT : PHYSICS
DATE :

## Topic :- THERMAL PROPERTIES OF MATTER

1
(c)

Since specific heat of lead is given in Joules, hence use $W=Q$ instead of $W=J Q$.
$\Rightarrow \frac{1}{2} \times\left(\frac{1}{2} m v^{2}\right)=m . c . \Delta \theta \Rightarrow \Delta \theta=\frac{v^{2}}{4 c}=\frac{(300)^{2}}{4 \times 150}=150^{\circ} \mathrm{C}$
(a)

Anomalous density of water is given by (a). It has maximum density at $4^{\circ} \mathrm{C}$.
(d)

Area under given curve represents emissive power and emissive power $\propto T^{4} \Rightarrow A \propto T^{4}$
$\Rightarrow \frac{A_{2}}{A_{1}}=\frac{T_{2}^{4}}{T_{1}^{4}}=\frac{(273+327)^{4}}{(273+27)^{4}}=\left(\frac{600}{300}\right)^{4}=\frac{16}{1}$
(b)

When length of the liquid column remains constant, then the level of liquid moves down with respect to the container, thus $\gamma$ must be less than $3 \alpha$
Now we can write $V=V_{0}(1+\gamma \Delta T)$
Since $V=A l_{0}=\left[A_{0}(1+2 \alpha \Delta T)\right] l_{0}=V_{0}(1+2 \alpha \Delta T)$
Hence $V_{0}(1+\gamma \Delta T)=V_{0}(1+2 \alpha \Delta T) \Rightarrow \gamma=2 \alpha$
(b)

Highly polished mirror like surfaces are good reflectors, but not good radiators
(c)

At steady state, rate of heat flow for both blocks will be same,
i.e.,$\frac{K_{1} A\left(\theta_{1}-\theta\right)}{l_{1}}=\frac{K_{2} A\left(\theta-\theta_{2}\right)}{l_{2}}\left[\right.$ Given $\left.l_{1}-l_{2}\right]$
$\Rightarrow K_{1} A\left(\theta_{1}-\theta\right)=K_{2} A\left(\theta-\theta_{2}\right) \Rightarrow \theta=\frac{K_{1} \theta_{1}+K_{2} \theta_{2}}{K_{1}+K_{2}}$


8
(d)

Let the temperature of function be $\theta$, then

$$
H=H_{1}+H_{2}
$$

$$
\Rightarrow \quad \frac{K A(\theta-0)}{L}=\frac{K A(90-\theta)}{L}+\frac{K A(90-\theta)}{L}
$$



Or $\quad \theta=90-\theta+90-\theta$
Or $\quad \theta=180-2 \theta$
Or $3 \theta=180$
Or $\theta=60^{\circ} \mathrm{C}$
(d)

Amount of energy radiated $\propto$ (Temperature) ${ }^{4}$
(a)

Convection is not possible in weightlessness. So the liquid will be heated through conduction
(a)

Luminosity of a star depends upon the total radiations emitted by the star.
The star emits 17000 times the radiations emitted by the sun.
$\therefore \quad E=\sigma T^{4}$
Hence, $\quad \frac{E_{1}}{E}=\left(\frac{T_{1}}{T}\right)^{4}$
So, $\quad(17000)^{1 / 4}=\frac{T_{1}}{T} \quad$ (Given, $E_{1}=17000 E$ )

$$
T_{1}=6000 \times 11.4=68400 \mathrm{~K}
$$

(b)

Intensity is directly proportional to energy.
(b)

Heat current $\frac{Q}{t} \propto \frac{r^{2}}{l}$, from the given options, option (b) has higher value of $\frac{r^{2}}{l}$.
(c)

Stress $=Y \alpha \Delta \theta$; hence it is independent of length
(a)

Heat required to raise the temperature of 40 g of water from $25^{\circ} \mathrm{C}$ to $54.3^{\circ} \mathrm{C}$, is equivalent to sum of heat required to condense the steam.
$\therefore$ Heat required to raise the temperature of water by $t^{\circ} \mathrm{C}$ is

$$
\begin{equation*}
=m_{1} c \Delta t_{1} \tag{i}
\end{equation*}
$$

Where $c$ is specific heat of water and $m$ the mass. Heat required to condense steam

$$
\begin{equation*}
=m_{2} L+m_{2} c \Delta t_{2} \tag{ii}
\end{equation*}
$$

Equating eqs. (i) and (ii), we get

$$
m_{2} L+m_{2} c \Delta t_{2}=m_{1} c \Delta t_{1}
$$

Given, $m_{2}=2 \mathrm{~g}$

$$
\begin{aligned}
& \Delta t_{2}=(100-54.3)^{\circ} \mathrm{C}=45.7^{\circ} \mathrm{C} \\
& m_{1}=40 \mathrm{~g} \\
& \Delta t_{1}=(54.3-25)^{\circ} \mathrm{C}=29.3^{\circ} \mathrm{C} \\
& c=1 \mathrm{calg}^{-1} \\
\Rightarrow & 2 \times L+2 \times 1 \times 45.7=40 \times 1 \times 29.3 \\
\Rightarrow & \\
\Rightarrow & 2 L+91.4=1172 \\
\Rightarrow &
\end{aligned}
$$

(a)

Rate of cooling $\propto\left(T^{4}-T_{0}^{4}\right)$
$\Rightarrow \frac{H}{H^{\prime}}=\frac{\left(T_{1}^{4}-T_{0}^{4}\right)}{\left(T_{2}^{4}-T_{0}^{4}\right)}=\frac{600^{4}-200^{4}}{400^{4}-200^{4}}$
Or $H^{\prime}=\frac{(16+4)(16-4) H}{(36+4)(36-4)}=\frac{3}{16} H$
(d)

$$
\theta_{\text {mix }}=\frac{m_{W} \theta_{W}-\frac{m_{i} L_{i}}{c_{W}}}{m_{i}+m_{W}}=\frac{100 \times 50-10 \times \frac{80}{1}}{10+100}=38.2^{\circ} \mathrm{C}
$$

(b)
$\Delta L=L_{0} \alpha \Delta \theta$
$\operatorname{Rod} A: 0.075=20 \times \alpha_{A} \times 100 \Rightarrow \alpha_{A}=\frac{75}{2} \times 10^{-6} /{ }^{\circ} \mathrm{C}$
$\operatorname{rod} B: 0.045=20 \times \alpha_{B} \times 100 \Rightarrow \alpha_{B}=\frac{45}{2} \times 10^{-6} /{ }^{\circ} \mathrm{C}$
For composite rod : $x \mathrm{~cm}$ of $A$ and $(20-x) c m$ of $B$ we have

$0.060=x \alpha_{A} \times 100+(20-x) \alpha_{B} \times 100$
$=x\left[\frac{75}{2} \times 10^{-6} \times 100+(20-x) \times \frac{45}{2} \times 10^{-6} \times 100\right]$
0 n solving we get $x=10 \mathrm{~cm}$
(b)

Suppose thickness of each wall is $x$ then
$\left(\frac{Q}{t}\right)_{\text {combination }}=\left(\frac{Q}{t}\right)_{A} \Rightarrow \frac{K_{S} A\left(\theta_{1}-\theta_{2}\right)}{2 x}=\frac{2 K A\left(\theta_{1}-\theta\right)}{x}$
$\because K_{S}=\frac{2 \times 2 K \times K}{(2 K+K)}=\frac{4}{3} K$ and $\left(\theta_{1}-\theta_{2}\right)=36^{\circ}$
$\Rightarrow \frac{\frac{4}{3} K A \times 36}{2 x}=\frac{2 K A\left(\theta_{1}-\theta\right)}{x}$
Hence temperature difference across will $A$ is

(c)

As the coefficient expansion of metal is less as compared to the coefficient of cubical expansion of liquid, we may neglect the expansion of metal ball. So when the ball is immersed in alcohol at $0^{\circ} \mathrm{C}$, it displaces some volume $V$ of alcohol at $0^{\circ} \mathrm{C}$, and has weight $W_{1}$ $\therefore W_{1}=W_{0}-V \rho_{0} g$ Where $W_{0}=$ weight of ball in air similarly, $W_{2}=W_{0}-V \rho_{59} g$ where $\rho_{0}=$ density of alcohol at $0^{\circ} \mathrm{C}$ and $\rho_{59}=$ density of alcohol at $59^{\circ} \mathrm{C}$ As $\rho_{59}<\rho_{0}, \Rightarrow W_{2}>W_{1}$ or $W_{1}<W_{2}$
(a)

Water has maximum specific heat


| ANSWER-KEY |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| A. | C | A | D | B | B | C | D | D | A | A |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |  |
| A. | B | B | C | A | A | D | B | B | C | A |  |
|  |  |  |  |  |  |  |  |  |  |  |  |



