CLASS : XITH
DATE:

Solutions
SUBJECT : PHYSICS
DPP NO.: 7

1

2
(a)

Work done $W=J Q$

$$
\begin{aligned}
& =4.2(0.5 \times 10+1 \times 80+1 \times 100+1 \times 540) \\
& =3045 \mathrm{~J}
\end{aligned}
$$

(c)

Modulus of elasticity $=\frac{\text { Force }}{\text { Area }} \times \frac{l}{\Delta l}$

$$
\begin{aligned}
3 \times 10^{11} & =\frac{33000}{10^{-3}} \times \frac{l}{\Delta l} \\
\frac{\Delta l}{l} & =\frac{33000}{10^{-3}} \times \frac{1}{3 \times 10^{11}} \\
& =11 \times 10^{-5}
\end{aligned}
$$

Change in length, $\frac{\Delta l}{l}=\alpha \Delta T$

$$
11 \times 10^{-5}=1.1 \times 10^{-5} \times \Delta T
$$

$$
\Rightarrow \quad \Delta T=10 \mathrm{~K} \text { or } 10^{\circ} \mathrm{C}
$$

3
(a)

We know that, $\frac{C}{100}=\frac{F-32}{180}$ or $F=\frac{9}{5} C+32$

Equation of straight line is, $y=m x+c$
Hence, $m=(9 / 5)$, positive and $c=32$ positive. The graph is shown in figure
5
(b)
$m c(\Delta T)=\frac{\frac{1}{2}\left(\frac{1}{2} m v^{2}\right)}{J}$
$\Delta T=\frac{v^{2}}{4 J c}=\frac{480 \times 480}{4 \times 4.2 \times\left(0.03 \times 10^{3}\right)}=457^{\circ} \mathrm{C}$
(c)

At absolute zero (i.e., 0 K) $v_{r m s}$ becomes zero
(a)
$\Delta \theta=0.0023 h=0.0023 \times 100=0.23^{\circ} \mathrm{C}$
(d)

The thermal radiation from a hot body travels with a velocity of light in vacuum i.e. $3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
(c)

Heat transferred in one minute is utilised in melting the ice so, $\frac{K A\left(\theta_{1}-\theta_{2}\right) t}{l}=m \times L$
$\Rightarrow m=\frac{10^{-3} \times 92 \times(100-0) \times 60}{1 \times 8 \times 10^{4}}=6.9 \times 10^{-3} \mathrm{~kg}$
0 (b)
Triple point of water is 273.16 K
(b)

According to Wien's law
$T \propto \frac{1}{\lambda}$
Red colour has maximum wavelength, so its temperature will be minimum and hence, it will cool at the earliest
(d)

Let the temperature of common interface be $T^{\circ} \mathrm{C}$. Rate of heat flow

$$
\begin{array}{rlrl}
& H & =\frac{Q}{t}=\frac{K A \Delta T}{l} \\
& \therefore & H_{1} & =\left(\frac{Q}{t}\right)_{1}=\frac{2 K A\left(T-T_{1}\right)}{4 x} \\
& \text { And } & H_{2} & =\left(\frac{Q}{t}\right)_{2}=\frac{K A\left(T_{2}-T\right)}{x}
\end{array}
$$

In steady state, the rate of heat flow should be same in whole system $i e$,

$$
\begin{array}{cc}
& H_{1}=H_{2} \\
\Rightarrow & \frac{2 K A\left(T-T_{1}\right)}{4 x}=\frac{K A\left(T_{2}-T\right)}{x} \\
\Rightarrow & \frac{T-T_{1}}{2}=T_{2}-T \\
\Rightarrow & T-T_{1}=2 T_{2}-2 T \\
\Rightarrow & T=\frac{2 T_{2}+T_{1}}{3} \tag{i}
\end{array}
$$

Hence, heat flow from composite slab is

$$
\begin{align*}
H & =\frac{K A\left(T_{2}-T\right)}{x} \\
& =\frac{K A}{x}\left(T_{2}-\frac{2 T_{2}+T_{1}}{3}\right)=\frac{K A}{3 x}\left(T_{2}-T_{1}\right) \tag{ii}
\end{align*}
$$

[from Eq. (i)]
Accordingly, $H=\left[\frac{A\left(T_{2}-T_{1}\right) K}{x}\right] f$
By comparing Eqs. (ii) and (iii), we get
$\Rightarrow \quad f=\frac{1}{3}$
(b)

According to Wien's displacement law

$$
\begin{array}{ll}
& \lambda_{m} T=\text { constant } \\
\therefore & \frac{\left(\lambda_{m}\right)_{1}}{\left(\lambda_{m}\right)_{2}}=\frac{T_{2}}{T_{1}} \\
\text { Here } & \frac{T_{1}}{T_{2}}=\frac{3}{2},\left(\lambda_{m}\right)_{1}=4000 \AA=4000 \times 10^{-10} \mathrm{~m} \\
\therefore & \left(\lambda_{m}\right)_{2}=\frac{4000 \times 10^{-10} \times 3}{2}=6000 \AA
\end{array}
$$

(a)

When the relative humidity is low (approx. 25\%), the evaporation from our body is faster. Thus we feel colder
(b)

The metal X has a higher coefficient of expansion compared to that for metal Y so, on placing bimetallic strip in a cold bath, X will shrink more than Y. Hence, the strip will bend towards the left.
(c)
$\frac{X-L}{U-L}=\frac{C}{100} \Rightarrow \frac{62-(-10)}{110-(-10)}=\frac{C}{100} \quad\left(C=60^{\circ} \mathrm{C}\right)$
(a)

Ordinary glass prism (crown, flint) absorbs the infrared radiation but rock salt prism transmit them. Hence it is used to obtain the spectrum of infrared radiation
(d)
$Q \propto T^{4} \Rightarrow \frac{H_{A}}{H_{B}}=\left(\frac{273+727}{273+327}\right)^{4}=\left(\frac{10}{6}\right)^{4}=\left(\frac{5}{3}\right)^{4}=\frac{625}{81}$
(a)

Suppose, height of liquid in each arm before rising the temperature is l.

With temperature rise height of liquid in each arm increases i.e. $l_{1}>l$ and $l_{2}>l$
Also $l=\frac{l_{1}}{1+\gamma t_{1}}=\frac{l_{2}}{1+\gamma t_{2}}$
$\Rightarrow l_{1}+\gamma l_{1} t_{2}=l_{2}+\gamma l_{2} t_{1} \Rightarrow \gamma=\frac{l_{1}-l_{2}}{l_{2} t_{1}-l_{1} t_{2}}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	A	C	A	C	B	C	A	D	C	B		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	B	D	B	A	B	C	A	D	D	A		

