CLASS : XITh
Solutions
SUBJECT : PHYSICS
DPP NO.: 5

## Topic :- THERMAL PROPERTIES OF MATTER

1

2

3
(b)

According to Stefan's law of radiation

$$
\begin{array}{lll} 
& U & \propto T^{4} \\
\Rightarrow & \frac{U_{1}}{U_{2}} & =\left(\frac{T_{1}}{T_{2}}\right)^{4} \\
& \frac{U_{1}}{U_{2}} & =\left(\frac{T}{T / 2}\right)^{4} \\
\text { Or } & \frac{U_{1}}{U_{2}} & =\left(\frac{2}{1}\right)^{4} \\
& & (\because U \text { is the energy }) \\
\text { Or } & \frac{U_{1}}{U_{2}} & =\left(\frac{16}{1}\right) \\
\text { Or } & U_{2} & =\frac{U_{1}}{16} \\
\Rightarrow & U_{2} & =\frac{U}{16}
\end{array}
$$

(b)

In series, $R_{e q}=R_{1}+R_{2} \Rightarrow \frac{2 l}{K_{e q} A}=\frac{l}{K_{1} A}+\frac{l}{K_{2} A}$
$\Rightarrow \frac{2}{K_{e q}}=\frac{1}{K_{1}}+\frac{1}{K_{2}} \Rightarrow K_{e q}=\frac{2 K_{1} K_{2}}{K_{1}+K_{2}}$
(d)

From Stefan law, the energy radiated by sun is given by. $P=\sigma e A T^{4}$, assuming e=1
for sun.
In Ist case, $\quad P_{1}=\sigma e \times 4 \pi R^{2} \times T^{4}$
In 2nd case, $P_{2}=\sigma e \times 4 \pi\left(2 R^{2}\right) \times\left(2 T^{4}\right)$

$$
=\sigma e \times 4 \pi R^{2} \times T^{4} \times 64=64 P_{1}
$$

The rate at which energy is received by earth is,

$$
E=\frac{P}{4 \pi R_{S E}^{2}} \times A_{E}
$$

where $A_{E}=$ area of earth
$R_{S E}=$ distance between sun and earth
So, In Ist case, $E_{1}=\frac{P_{1}}{4 \pi R_{S E}^{2}} \times A_{E}$

$$
E_{2}=\frac{P_{2}}{4 \pi R_{S E}^{2}} \times A_{E}=64 E_{1}
$$

(a)

For gases $\gamma$ is more
(d)

Suppose $m \mathrm{gm}$ ice melted, then heat required for its melting $=m L=m \times 80 \mathrm{cal}$
Heat available with steam for being condensed and then brought to $0^{\circ} \mathrm{C}$
$=1 \times 540+1 \times 1 \times(100-0)=640 \mathrm{cal}$
$\Rightarrow$ Heat lost $=$ Heat taken
$\Rightarrow 640=m \times 80 \Rightarrow m=8 \mathrm{gm}$
Short trick : You can remember that amount of steam ( $m^{\prime}$ ) at $100^{\circ} \mathrm{C}$ required to melt $m \mathrm{gm}$ ice at $0^{\circ} \mathrm{C}$ is
$m^{\prime}=\frac{m}{8}$
Here, $m=8 \times m^{\prime}=8 \times 1=8 \mathrm{gm}$
(c)

Rate of energy $\frac{Q}{t}=P=A \varepsilon \sigma T^{4} \Rightarrow P \propto T^{4}$
$\Rightarrow \frac{P_{2}}{P_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{4}=\left(\frac{927+273}{127+273}\right)^{4} \Rightarrow P_{1}=405 \mathrm{~W}$
(d)
$\frac{Q}{t}=\frac{K A \Delta \theta}{l} \Rightarrow \frac{Q}{t} \propto \frac{A}{l} \propto \frac{d^{2}}{l}[d=$ diameter of rod $]$
$\Rightarrow \frac{(Q / t)_{1}}{(Q / t)_{2}}=\left(\frac{d_{1}}{d_{2}}\right)^{2} \times \frac{l_{2}}{l_{1}}=\left(\frac{1}{2}\right)^{2} \times\left(\frac{1}{2}\right)=\frac{1}{8}$
(c)

Heat required is proportional to square of radius

$$
\frac{Q_{1}}{Q_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}}=\frac{(1.5)^{2}}{(1)^{2}}=\frac{9}{4}
$$

(a)

In series both walls have same rate of heat flow. Therefore
$\frac{d Q}{d t}=\frac{K_{1} A\left(T_{1}-\theta\right)}{d_{1}}=\frac{K_{2} A\left(\theta-T_{2}\right)}{d_{2}}$
$\Rightarrow K_{1} d_{2}\left(T_{1}-\theta\right)=K_{2} d_{1}\left(\theta-T_{2}\right)$

$\Rightarrow \theta=\frac{K_{1} d_{2} T_{1}+K_{2} d_{1} T_{2}}{K_{1} d_{2}+K_{2} d_{1}}$
(c)

Due to evaporation cooling is caused which lowers the temperature of bulb wrapped in wet hanky
(c)
$t=\frac{Q l}{K A\left(\theta_{1}-\theta_{2}\right)}=\frac{m L l}{K A\left(\theta_{1}-\theta_{2}\right)}=\frac{V \rho L l}{K A\left(\theta_{1}-\theta_{2}\right)}$
$=\frac{5 \times A \times 0.92 \times \frac{5+10}{2}}{0.004 \times A \times 10 \times 3600}=19.1$ hours
(a)

If $m \mathrm{gm}$ ice melts then
Heat lost = Heat gain
$80 \times 1 \times(30-0)=m \times 80 \Rightarrow m=30 \mathrm{gm}$
(b)

Substances are classified into two categories
(i) water like substances which expand on solidification.
(ii) $\mathrm{CO}_{2}$ like (Wax, Ghee etc.) substances which contract on solidification.

Their behaviour regarding solidification is opposite.
Melting point of ice decreases with rise of pressure but that of wax etc increases with increase in pressure. Similarly ice starts forming from top to downwards whereas wax starts its formation from bottom to upwards
(d)

According to Stefan's law

$$
E \propto T^{4} \quad \text { or } \quad E=\sigma T^{4}
$$

Where $\sigma$ is Stefan's constant. It's value is

$$
=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}
$$

Here, $T_{1}=27+273=300 \mathrm{~K}$

$$
T_{2}=927+273=1200 \mathrm{~K}
$$

$\therefore \quad \frac{E_{1}}{E_{2}}=\left(\frac{300}{1200}\right)^{4}=1: 256$
(a)

The equivalent electrical circuit, figure in these cases is of Wheatstone bridge. No current would flow through central rod $C D$ when the bridge is balanced. The condition for balanced Wheatstone bridge is $\frac{P}{Q}=\frac{R}{S}$ (in terms of resistances)
$\frac{1 / K_{1}}{1 \cdot K_{2}}=\frac{1 / K_{3}}{1 / K_{4}}$ or $\frac{K_{2}}{K_{1}}=\frac{K_{4}}{K_{3}}$
Or $K_{1} K_{4}=K_{2} K_{3}$
(a)

$$
\begin{aligned}
\text { Thermal resistivity } & =\frac{1}{\text { Thermal conductivity }} \\
& =\frac{1}{2}=0.5
\end{aligned}
$$

(d)

Because steady state has been reached

| ANSWER-KEY |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| A. | B | B | D | A | D | C | D | D | C | C |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |  |
| A. | A | C | C | C | A | B | D | A | A | D |  |
|  |  |  |  |  |  |  |  |  |  |  |  |



