CLASS : XITh
Solutions

Topic :- THERMAL PROPERTIES OF MATTER

1
(b)
$\frac{Q}{t}=\frac{K A \Delta \theta}{l} \Rightarrow 6000=\frac{200 \times 0.75 \times \Delta \theta}{1}$
$\therefore \Delta \theta=\frac{6000 \times 1}{200 \times 0.75}=40^{\circ} \mathrm{C}$
3
(b)
$c=\frac{Q}{m \cdot \Delta \theta} \rightarrow \frac{J}{k g \times{ }^{\circ} \mathrm{C}}$
(a)
$P=\left(\frac{Q}{t}\right) \propto T^{4} \Rightarrow \frac{W}{P_{2}}=\left(\frac{T}{T / 3}\right)^{4} \Rightarrow P_{2}=\frac{W}{81}$
(b)

From Wien's displacement law

$$
\begin{array}{rlrl}
& & \lambda_{m} T & =\text { constant } \\
\Rightarrow & & \lambda_{m 1} T_{1} & =\lambda_{m 2} T_{2} \\
\text { Or } & \frac{T_{1}}{T_{2}} & =\frac{\lambda_{m 2}}{\lambda_{m 1}} \tag{i}
\end{array}
$$

Here, $\lambda_{m 1}=510 \mathrm{~nm}, \quad \lambda_{m 2}=350 \mathrm{~nm}$
So, on putting these values in Eq. (i)

$$
\frac{T_{1}}{T_{2}}=\frac{350}{510} \Rightarrow \frac{T_{1}}{T_{2}}=\frac{35}{51}=0.69
$$

(c)
$P \times t=m c \Delta \theta$
$\Rightarrow t=\frac{m c \Delta \theta}{P}=\frac{4200 m \Delta \theta}{P}=\frac{4200 \times m \times \Delta \theta}{V I}$
$\left\{\because C_{\text {water }}=4200^{J} / \mathrm{kg} \times{ }^{\circ} \mathrm{C}\right\}$
$\Rightarrow t=\frac{4200 \times 1 \times(100-20)}{220 \times 4}=381 \mathrm{sec} \approx 6.3 \mathrm{~min}$
(c)

Solids, liquids and gases all expand on being heated, as a result density (= mass/volume)
decreases
(c)

Heat capacity/volume $=c \times \frac{m}{V}=c \times \rho$
Desired ratio $=\frac{c_{1} \rho_{1}}{c_{2} \rho_{1}}=\frac{3}{5} \times \frac{5}{6}=1: 2$
(c)

Thermoelectric thermometer is used for finding rapidly varying temperature
(c)

Heat current, $H=\frac{Q}{t}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{d}$

$$
=\frac{0.01 \times 0.8\left(30^{\circ}-0^{\circ}\right)}{2 \times 10^{-2}}=12 \mathrm{Js}^{-1}
$$

(a)

Natural convection arises due to difference of density at two places and is a consequence of gravity
(d)

At boiling point, vapour pressure becomes equal to the external pressure
(a)

Newton's law of cooling states that the rate of cooling of a body is directly proportional to temperature difference between the body and the surroundings, provided the temperature difference is small, (less than $10^{\circ} \mathrm{C}$), and Newton's law of cooling is given by

$$
\frac{d T}{d t} \propto\left(\theta-\theta_{0}\right)
$$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	B	C	B	A	B	C	C	C	B	A	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	D	C	B	B	A	C	C	A	D	A	

