

Solids, liquids and gases all expand on being heated, as a result density (= mass/volume) decreases

8

(c) Heat capacity/volume = $c \times \frac{m}{v} = c \times \rho$ Desired ratio $=\frac{c_1\rho_1}{c_2\rho_1} = \frac{3}{5} \times \frac{5}{6} = 1:2$ **b)**

Heat current,
$$\frac{Q}{t} = \frac{KA(\theta_1 - \theta_1)}{l}$$

= $\frac{100 \times 100 \times 10^{-4}(100 - 0)}{1}$
 $\Rightarrow \qquad \frac{Q}{t} = 100 \text{J/s} = 6 \times 10^3 \text{ J/min}$

11 (d)

 \Rightarrow

(c)

Heat released to convert x g of steam at 100°C to water at 100°C is $x \times 540$ cals. If y g of ice is converted from 0°C to water at 100°C it requires heat $y \times 80 + y \times 1 \times$ 100 = 180y

$$\therefore x \times 540 = 180y \text{ or } \frac{y}{x} = \frac{540}{180} = \frac{3}{1}$$

12

$$\frac{\Delta Q}{\Delta t} = \frac{KA\Delta\theta}{\Delta x} \Rightarrow \text{Thermal gradient} \frac{\Delta\theta}{\Delta x}$$
$$= \frac{(\Delta Q/\Delta t)}{KA} = \frac{10}{0.4} = 25^{\circ}\text{C/cm}$$

13

(b)
In M.K.S. system unit of
$$\sigma$$
 is $\frac{J}{m^2 \times s \times K^4}$
 $\Rightarrow 1 \frac{J}{m^2 \times s \times K^4} = \frac{10^7 erg}{10^4 cm^2 \times s \times K^4} = 10^3 \frac{erg}{cm^2 \times s \times K^4}$
(b)

14

From Newton's law of cooling when a hot body is cooled in air, the rate of loss of heat by the body is proportional to the temperature difference between the body and its surroundings.

Given, $\theta_1 = 60^{\circ}$ C, $\theta_2 = 50^{\circ}$ C, $\theta = 25^{\circ}$ C

Rate of loss of heat=*K* :.

(Mean temp.-Atmosphere temp.)

Where *K* is coefficient of thermal conductivity

$$\frac{\theta_1 - \theta_2}{t} = K\left(\frac{\theta_1 + \theta_2}{2} - \theta\right)$$
$$\frac{60 - 50}{10} = K\left(\frac{60 + 50}{2} - 25\right)$$
$$K = \frac{1}{30}$$

Also putting the value of *K*, we have

$$\frac{\frac{50-\theta_3}{10} = \frac{1}{30} \left(\frac{50+\theta_3}{2} - 25\right)}{\theta_3 = 42.85^{\circ}\text{C}}$$

15

 \Rightarrow

 \Rightarrow

(a)

The temperature at which a black body ceases to radiate energy is 0 K.

16 **(c)**

(c)

Thermoelectric thermometer is used for finding rapidly varying temperature

17

Heat current,
$$H = \frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{d}$$

= $\frac{0.01 \times 0.8(30^\circ - 0^\circ)}{2 \times 10^{-2}} = 12 \text{ Js}^{-1}$

18 **(a)**

Natural convection arises due to difference of density at two places and is a consequence of gravity

19 **(d)**

At boiling point, vapour pressure becomes equal to the external pressure

20 **(a)**

Newton's law of cooling states that the rate of cooling of a body is directly proportional to temperature difference between the body and the surroundings, provided the temperature difference is small, (less than 10°C), and Newton's law of cooling is given by

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
А.	В	С	В	А	В	С	С	С	В	А
Q.	11	12	13	14	15	16	17	18	19	20
А.	D	С	В	В	А	С	С	А	D	А

