CLASS : XITH
DATE:

Solutions
SUBJECT : PHYSICS
DPP NO. : 3

Topic :- THERMAL PROPERTIES OF MATTER

1
(c)

Variations of density with temperature is given by

$$
\rho^{\prime}=\frac{\rho}{1+\gamma \Delta \theta}
$$

Fraction change is

$$
\begin{aligned}
\frac{\rho^{\prime}-\rho}{\rho} & =\left[\frac{1}{1+49 \times 10^{-5} \times 30}-1\right] \\
& =1.5 \times 10^{-2}
\end{aligned}
$$

(c)
$\frac{90-60}{5}=K\left(\frac{90+60}{2}-20\right) \Rightarrow 6-K \times 55 \Rightarrow K-\frac{6}{55}$
And, $\frac{60-30}{t}=\frac{6}{55}\left(\frac{60+30}{2}-20\right) \Rightarrow t=11$ minute
(a)

At low temperature short wavelength radiation is emitted. As the temperature rises colour of emitted radiations are in the following order
Red \rightarrow Yellow \rightarrow Blue \rightarrow White (at highest temperature)
(d)
$-200^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$ can be measured by platinum resistance thermometer
(d)

A thermopile is a sensitive instrument, used for detection of heat radiation and measurement of their intensity

(b)

When the light emitted from the sun's photosphere passes through it's outer part
Chromosphere, certain wave lengths are absorbed. In the spectrum of sunlight, a large number of dark lines are seen called Fraunhoffer lines
(b)

Heat required to melt 1 g of ice at $0^{\circ} \mathrm{C}$ to water at $0^{\circ} \mathrm{C}$
$=1 \times 80 \mathrm{cal}$.
Heat required to raise temperature of 1 g of water from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}=1 \times 1 \times 100 \mathrm{cal}$
Total heat required for maximum temperature of $100^{\circ} \mathrm{C}=80+100=180 \mathrm{cal}$
As one gram of steam gives 540 cal of heat when it is converted to water at $100^{\circ} \mathrm{C}$, therefore, temperature of the mixture would be $100^{\circ} \mathrm{C}$
(a)

Thermal resistance
$=\frac{l}{K A}=\left[\frac{L}{M L T^{-3} K^{-1} \times L^{2}}\right]=\left[M^{-1} L^{-2} T^{3} K\right]$
(a)

It is given that $\frac{K_{1}}{K_{2}}=\frac{1}{3} \Rightarrow K_{1}=K$ then $K_{2}=3 K$ the temperature of the junction in contact
$\theta=\frac{K_{1} \theta_{1}+K_{2} \theta_{2}}{K_{1}+K_{2}}=\frac{1 \times 100+3 \times 0}{1+3}=\frac{100}{4}=25^{\circ} \mathrm{C}$

(d)

If temperature of surrounding is considered then net loss of energy of a body by radiation
$Q=\operatorname{A\varepsilon \sigma }\left(T^{4}-T_{0}^{4}\right) t \Rightarrow Q \propto\left(T^{4}-T_{0}^{4}\right) \Rightarrow \frac{Q_{1}}{Q_{2}}=\frac{T_{1}^{4}-T_{0}^{4}}{T_{2}^{4}-T_{0}^{4}}$
$=\frac{(273+200)^{4}-(273+27)^{4}}{(273+400)^{4}-(273+27)^{4}}=\frac{(473)^{4}-(300)^{4}}{(673)^{4}-(300)^{4}}$
(d)

Due to large specific heat of water, it releases large heat with very small temperature change
(c)

Rate of cooling $\left(-\frac{d T}{d t}\right) \propto$ emissivity (e)
From the graph,

$$
\left.\begin{array}{lrl}
& & \left(-\frac{d T}{d t}\right)_{x}
\end{array}>\left(-\frac{d T}{d t}\right)_{y}\right)
$$

Further emissivity $(e) \propto$ absorptive power (a) (good absorbers are good emitters also)

$$
\therefore \quad a_{x}>a_{y}
$$

(a)
$\frac{Q_{1}}{Q_{2}}=\frac{r_{1}^{2} T_{1}^{4}}{r_{2}^{2} T_{2}^{4}}=\frac{4^{2}}{1^{2}} \times\left(\frac{2000}{4000}\right)^{4}=1$

(b)

In convection, the heated lighter particles move upwards and colder heavier particles move downwards to their place. This depends on weight and hence, on gravity.
(a)

The temperature of the body is same that of its surroundings, so the amount of heat absorbed by it should be equal to amount of heat radiated by it.
(b)
$\lambda_{m} \propto \frac{1}{T} \Rightarrow \lambda_{m_{1}} T_{1}=\lambda_{m_{2}} T_{2}$
$\Rightarrow T_{2}=\frac{\lambda_{m_{1}} T_{1}}{\lambda_{m_{2}}}=\frac{1.4 \times 10^{-6} \times 1000}{2.8 \times 10^{-6}}=500 \mathrm{~K}$
(a)
$\frac{Q_{2}}{Q_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{4}=\left(\frac{273+927}{273+327}\right)^{4}=\left(\frac{1200}{600}\right)^{4}=16$
$\Rightarrow Q_{2}=32 \mathrm{KJ}$
(d)
$\frac{Q}{t}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{l} \Rightarrow \frac{m L}{t}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{l}$
$\Rightarrow K \propto \frac{1}{t} \quad[\because$ remaining quantities are same]
$\Rightarrow \frac{K_{1}}{K_{2}}=\frac{t_{2}}{t_{1}}=\frac{40}{20}=\frac{2}{1}$
(b)

Suppose person climbs upto height h, then by using
$W=J Q \Rightarrow m g h=J Q$
$\Rightarrow 60 \times 9.8 \times h=4.2 \times\left(10^{5} \times \frac{28}{100}\right) \Rightarrow h=200 \mathrm{~m}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	C	C	A	D	D	B	A	B	A	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	D	D	C	A	B	A	B	A	D	B		

