CLASS : XITH
SUBJECT : PHYSICS
DATE:
DPP NO. :10

Topic :- THERMAL PROPERTIES OF MATTER

1.. The original temperature of a black body is $727^{\circ} \mathrm{C}$. The temperature at which this black body must be raised so as to double the total radiant energy, is
a) 971 K
b) 1190 K
c) 2001 K
d) 1458 K
2. Three objects coloured black, gray and white can with stand hostile conditions at $2800^{\circ} \mathrm{C}$. These objects are thrown into furnace where each of them attains a temperature of $2000^{\circ} \mathrm{C}$. Which object will glow brightest?
a) The white object
b) The black object
c) All glow with equal brightness
d) Gray object
3. Mercury thermometers can be used to measure temperatures upto
a) $100^{\circ} \mathrm{C}$
b) $212^{\circ} \mathrm{C}$
c) $360^{\circ} \mathrm{C}$
d) $500^{\circ} \mathrm{C}$
4. Two spheres of radii 8 cm and 2 cm are cooling. Their temperatures are $127^{\circ} \mathrm{C}$ and $527^{\circ} \mathrm{C}$ respectively. Find the ratio of energy radiated by them in the same time
a) 0.06
b) 0.5
c) 1
d) 2
5. Five identical rods are joined as shown in figure. Point A and C are maintained at temperature $120^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ respectively. The temperature of junction B will be

a) $100^{\circ} \mathrm{C}$
b) $80^{\circ} \mathrm{C}$
c) $70^{\circ} \mathrm{C}$
d) $0^{\circ} \mathrm{C}$
6. The saturation vapour pressure of water at $100^{\circ} \mathrm{C}$ is
a) 739 mm of mercury
b) 750 mm of mercury
c) 760 mm of mercury
d) 712 mm of mercury
7. Two spheres made of same substance have diameters in the ratio $1: 2$. Their thermal capacities are in the ratio of
a) $1: 2$
b) $1: 8$
c) $1: 4$
d) $2: 1$
8. The adjoining diagram shows the spectral energy density distribution E_{λ} of a black body at two different temperatures. If the areas under the curves are in the ratio $16: 1$, the value of temperature T is

a) $32,000 \mathrm{~K}$
b) $16,000 \mathrm{~K}$
c) $8,000 \mathrm{~K}$
d) $4,000 \mathrm{~K}$
9. A constant pressure air thermometer gave a reading of 47.5 units of volume when immersed in ice cold water, and 67 units in a boiling liquids. The boiling point of the liquid will be
a) $135^{\circ} \mathrm{C}$
b) $125^{\circ} \mathrm{C}$
c) $112^{\circ} \mathrm{C}$
d) $100^{\circ} \mathrm{C}$
10. A hammer of mass 1 kg having speed of $50 \mathrm{~m} / \mathrm{s}$, hit a iron nail of mass 200 gm . If specific heat of iron is $0.105 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}$ and half the energy is converted into heat, the raise in temperature of nail is
a) $7.1^{\circ} \mathrm{C}$
b) $9.2^{\circ} \mathrm{C}$
c) $10.5^{\circ} \mathrm{C}$
d) $12.1^{\circ} \mathrm{C}$
11. If a black body emits 0.5 J of energy per second when it is at $27^{\circ} \mathrm{C}$, then the amount of energy emitted by it when it is at $627^{\circ} \mathrm{C}$ will be
a) 40.5 J
b) 162 J
c) 13.5 J
d) 135 J
12. A calorimeter of mass 0.2 kg and specific heat $900 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$. Containing 0.5 kg of a liquid of specific heat $2400 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$. Its temperature falls from $60^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ in one minute. The rate of cooling is
a) $5 \mathrm{~J} / \mathrm{s}$
b) $15 \mathrm{~J} / \mathrm{s}$
c) $100 \mathrm{~J} / \mathrm{s}$
d) $115 \mathrm{~J} / \mathrm{s}$
13. It is difficult to cook rice in an open vessel by boiling it a high altitudes because of
a) Low boiling point and high pressure
b) High boiling point and low pressure
c) Low boiling point and low pressure
d) High boiling point and high pressure
14. A vessel contains 110 g of water. The heat capacity of the vessel is equal to 10 g of water. The initial temperature of water in vessel in $10^{\circ} \mathrm{C}$. If 220 g of hot water at $70^{\circ} \mathrm{C}$ is poured in the vessel, the final temperature neglecting radiation loss will be
a) $70^{\circ} \mathrm{C}$
b) $80^{\circ} \mathrm{C}$
c) $60^{\circ} \mathrm{C}$
d) $50^{\circ} \mathrm{C}$
15. A black body at $227^{\circ} \mathrm{C}$ radiates heat at the rate of $7 \mathrm{Cal} / \mathrm{cm}^{2} \mathrm{~s}$. At a temperature of $727^{\circ} \mathrm{C}$, the rate of heat radiated in the same units will be
a) 60
b) 50
c) 112
d) 80
16. A cane is taken out from a refrigerator at $0^{\circ} \mathrm{C}$. The atmospheric temperature is $25^{\circ} \mathrm{C}$. If t_{1} is the time taken to heat from $0^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ and t_{2} is the time taken from $10^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$, then
a) $t_{1}>t_{2}$
b) $t_{1}<t_{2}$
c) $t_{1}=t_{2}$
d) There is no relation
17. Equal masses of two liquids are filled in two similar calorimeters. The rate of cooling will
a) Depend on the nature heats of liquids
b) Depend on the specific heats of liquids
c) Be same for both the liquids
d) Depend on the mass of the liquids
18. Absolute zero $(0 \mathrm{~K})$ is that temperature at which
a) Matter ceases to exist
b) Ice melts and water freezes
c) Volume and pressure of a gas becomes zero
d) None of these
19. A wall has two layers A and B made of different materials. The thickness of both the layers is the same. The thermal conductivity of A and B are K_{A} and K_{B} such that $K_{A}=3 K_{B}$. The temperature across the wall is $20^{\circ} \mathrm{C}$. In thermal equilibrium
a) The temperature difference across $A=15^{\circ} \mathrm{C}$
b) The temperature difference across $A=5^{\circ} \mathrm{C}$
c) The temperature difference across A is $10^{\circ} \mathrm{C}$
d) The rate of transfer of heat through A is more than that through B
20. The apparent coefficient of expansion of a liquid when heated in a copper vessel is C and when heated in a silver vessel is S. If A is the linear coefficient of expansion of copper, then the linear coefficient of expansion of silver is
a) $\frac{C+S-3 A}{3}$
b) $\frac{C+3 A-S}{3}$
c) $\frac{S+3 A-C}{3}$
d) $\frac{C+S+3 A}{3}$

