CLASS : XITh
DATE :

Topic :- THERMAL PROPERTIES OF MATTER

1
(b)
$\frac{Q_{2}}{Q_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{4} \Rightarrow \frac{2}{1}=\left(\frac{T_{2}}{T_{1}}\right)^{4}$
$\Rightarrow T_{2}^{4}=2 \times T_{1}^{4}=2 \times(273+727)^{4} \Rightarrow T_{2}=1190 \mathrm{~K}$
(b)

An ideal black body absorbs all the radiations incident upon it and has an emissivity equal to 1 . If a black body and an identical another body are kept the same temperature, then the black body will radiate maximum power.
Hence, the black object at a temperature of $2000^{\circ} \mathrm{C}$ will glow brightest.
(c)

The boiling point of mercury is $400^{\circ} \mathrm{C}$. Therefore, the mercury thermometer can be used to measure the temperature upto $360^{\circ} \mathrm{C}$
(c)

Total energy radiated from a body

$$
Q=A \varepsilon \sigma T^{4} t
$$

Or $\quad \frac{Q}{t} \propto A T^{4}$

$$
\frac{Q}{t} \propto r^{2} T^{4} \quad\left(\because A=4 \pi r^{2}\right)
$$

$$
\frac{Q_{1}}{Q_{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{2}\left(\frac{T_{1}}{T_{2}}\right)^{4} j=\left(\frac{8}{2}\right)^{2}\left[\frac{273+127}{273+527}\right]^{4}=1
$$

(c)

If thermal resistance of each rod is considered R then, the given combination can be redrawn as follows

$(\text { Heat current })_{A C}=(\text { Heat current })_{A B}$
$\frac{(120-20)}{2 R}=\frac{(120-\theta)}{R} \Rightarrow \theta=70^{\circ} \mathrm{C}$
(c)

At boiling point saturation vapour pressure becomes equal to atmospheric pressure.
Therefore, at $100^{\circ} \mathrm{C}$ for water. S. V.P. $=760 \mathrm{~mm}$ of Hg (atm pressure)
(a)

According to Stefan's law

$$
\begin{aligned}
E & \propto T^{4} \\
\frac{E_{1}}{E_{2}} & =\left[\frac{T_{1}}{T_{2}}\right]^{4} \\
\frac{E_{1}}{0.5} & =\left[\frac{273+627}{273+27}\right]^{4} \\
E_{1} & =0.5\left(\frac{900}{300}\right)^{4} \\
\Rightarrow \quad E_{1} & =40.5 \mathrm{~J}
\end{aligned}
$$

(d)

Rate of cooling (here it is rate of loss of heat)
$\frac{d Q}{d t}=(m c+W) \frac{d \theta}{d t}=\left(m_{l} c_{l}+m_{c} c_{c}\right) \frac{d \theta}{d t}$
$\Rightarrow \frac{d Q}{d t}=(0.5 \times 2400+0.2 \times 900)\left(\frac{60-55}{60}\right)=115 \frac{\mathrm{~J}}{\mathrm{~s}}$
(c)

With rise of altitude pressure decreases and boiling point decreases
(d)

Let final temperature of water be θ

> Heat taken = Heat given
$100 \times 1 \times(\theta-10)+10(\theta-10)=220 \times 1(70-\theta)$
$\Rightarrow \quad \theta=48.8^{\circ} \mathrm{C}=50^{\circ} \mathrm{C}$
(c)
$E \propto T^{4} \Rightarrow \frac{E_{1}}{E_{2}}=\left(\frac{T_{1}}{T_{2}}\right)^{4} \Rightarrow \frac{7}{E_{2}}=\left(\frac{273+227}{273+727}\right)^{4}=\frac{1}{16}$
$\Rightarrow E_{2}=112 \frac{\mathrm{cal}}{\mathrm{cm}^{2} \times \mathrm{sec}}$
(b)

According to Newton's law of cooling t_{1} will be less than t_{2}.
(b)

Liquid having more specific heat has slow rate of cooling because for equal masses rate of cooling $\frac{d \theta}{d t} \propto \frac{1}{c}$
(c)

We know that $P=P_{0}(1+\gamma t)$ and $V=V_{0}(1+\gamma t)$
And $\gamma=(1 / 273) /{ }^{\circ} \mathrm{C}$ for $t=-273^{\circ} \mathrm{C}$, we have $P=0$ and $V=0$
Hence, at absolute zero, the volume and pressure of the gas become zero
(b)

In series rate of flow of heat is same
$\Rightarrow \frac{K_{A} A\left(\theta_{1}-\theta\right)}{l}=\frac{K_{B} A\left(\theta-\theta_{2}\right)}{l}$
$\Rightarrow 3 K_{B}\left(\theta_{1}-\theta\right)=K_{B}\left(\theta-\theta_{2}\right)$
$\Rightarrow 3\left(\theta_{1}-\theta\right)=\left(\theta-\theta_{2}\right)$

$$
\Rightarrow 3 \theta_{1}-3 \theta=\theta-\theta_{2} \Rightarrow 4 \theta_{1}-4 \theta=\theta_{1}-\theta_{2}
$$

$$
\Rightarrow 4\left(\theta_{1}-\theta\right)=\left(\theta_{1}-\theta_{2}\right)
$$

$$
\Rightarrow 4\left(\theta_{1}-\theta\right)=20 \Rightarrow\left(\theta_{1}-\theta\right)=5^{\circ} \mathrm{C}
$$

(b)
$\gamma_{r}=\gamma_{a}+\gamma_{v}$; where $\gamma_{r}=$ coefficient of real expansion,
$\gamma_{a}=$ coefficient of apparent expansion and
$\gamma_{v}=$ coefficient of expansion of vessel.
For copper $\gamma_{r}=C+3 \alpha_{C u}=C+3 A$
For silver $\gamma_{r}=S+3 \alpha_{A g}$
$=C+3 A=S+3 \alpha_{A g} \Rightarrow \alpha_{A g}=\frac{C-S+3 A}{3}$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	B	B	C	C	C	C	B	D	C	A	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	A	D	C	D	C	B	B	C	B	B	

