

CLASS : XIth DATE :

SUBJECT : CHEMISTRY DPP No. : 8

Topic :- STRUCTURE OF ATOM

1.	An atom emits energy equal to 4×10^{-12} erg. To which part of electromagnetic spectr belongs?			
	a) UV region	b) Visible region	c) IR region	d)Microwave region
2.	The valence shell electra a) $4s^0 3d^4$	ronic configuration of Cr b) $4s^2 3d^2$	c) $4s^2 3d^0$	d) $3p^{6}4s^{2}$
3.	The total number of ele orbitals of cesium ion a a) 8, 26, 10	ectrons present in all the are re <mark>spectively</mark> b) 10, 24, 20	e ' <i>s</i> ' orbitals, all the ' <i>p</i> ' or c) 8, 22, 24	bitals and all the ' <i>d</i> ' d) 12, 20, 22
4.	In the above question, a) $\sqrt{V/m}$	the velocity acquired by b) $\sqrt{(eV/m)}$	the electron will be; c) $\sqrt{(2eV/m)}$	d)None of these
5.	The ionization energy electron in its second of a) -2.67×10^{-18} J	of th <mark>e gro</mark> und state hydr orbit would be b) —5.45 × 10 ⁻¹⁹ J	ogen atom is 2.18 × 10 [−] c) −3.58 × 10 ^{−18} J	$^{-18}$ J. The energy of an d) -4.68 × 10 ⁻¹⁹ J
6.	The velocity of electron a) $\frac{1}{10}$ th	h in first orbit of H-atom b) $\frac{1}{100}$ th	s as compared to the ve c) $\frac{1}{1000}$ th	locity of light is d)Same
7.	A gas absorbs photon o nm, the other is at a) 1035 nm	of 355 nm and emits at t b) 325 nm	wo wavelengths. If one o c) 743 nm	of the emission is at 680 d)518 bm
8.	Bohr's model violates the rules of classical physics because it assumes that:			

a) All electrons have same charge

b) The nucleus have same charge

c) Electrons can revolve around the nucleus

d) A charged particle can accelerate without emitting radiant energy

a)
$$S = \sqrt{s(s+1)} \frac{h}{2\pi}$$
 b) $S = s \frac{h}{2\pi}$ c) $S = \frac{3}{2} \times \frac{h}{2\pi}$ d) None of these

19. A 3d-electron having
$$s = +1/2$$
 can have a magnetic quantum no:a) +2b) +3c) -3d) +4

20. The emission spectrum of hydrogen is found to satisfy the expression for the energy change, ΔE (in joules), such that $\Delta E = 2.18 \times 10^{-18} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$ J, where, $n_1 = 1,2,3, \dots$ and $n_2 = 2,3,4,\dots$ The spectral lines correspond to Paschen series are a) $n_1 = 1$ and $n_2 = 2,3,4$ b) $n_1 = 1$ and $n_2 = 3,4,5$ c) $n_1 = 3$ and $n_2 = 4,5,6$ d) $n_1 = 2$ and $n_2 = 3,4,5$

