CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY
DPP No. : 8

TOpic :- STRUCTURE OF ATOM

(b)

Find λ from $E=\frac{h c}{\lambda}$; It comes out to be $4965 \AA$, which represents visible region (i.e., in between $3800-7600 \AA$).
(a)

The ground state configuration of chromium is

$$
\begin{aligned}
& { }_{24} \mathrm{Cr}=[\mathrm{Ar}] 3 d^{5} 4 s^{1} \\
& \therefore \quad{ }_{24} \mathrm{cr}^{2+}=[\mathrm{Ar}] 3 d^{4} 4 s^{0}
\end{aligned}
$$

(b)

The atomic number of cesium is 55 . The electronic configuration of cesium atom is ${ }_{55} \mathrm{Cs}=1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6}, 4 s^{2}, 3 d^{10} 4 p^{6}, 5 s^{2}, 4 d^{10}, 5 p^{6}, 6 s^{1}$
The electronic configuration of cesium atom is
$\mathrm{Cs}^{+}=1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{10}, 4 s^{2} 4 p^{6} 4 d^{10}, 5 s^{2} 5 p^{6}, 6 s^{0}$
So, the total number of s-electrons $=10$,
The total number of p-electrons $=24$,
The total number of d-electrons $=20$

4

5

6
(c)
$K E=(1 / 2) m u^{2}=\mathrm{eV}$
$\therefore u=\sqrt{\frac{2 e V}{m}}$
(b)

Sine, $E \propto-\frac{1}{n^{2}}$
The energy of an electron in the second orbit will be

$$
\begin{aligned}
& E_{2}=\frac{E_{1}}{4}=\frac{\left(-2.18 \times 10^{-18} \mathrm{~J}\right)}{4} \\
& =-5.45 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

(b)

Velocity of an electron in first orbit of H atom is
$u=\frac{2.1847 \times 10^{8}}{1} \mathrm{cms}^{-1}$
Hence, it is $\frac{1}{100}$ th as compared to the velocity of light.

- (c)

Energy values are always additive.
$E_{\text {total }}=E_{1}+E_{2}$
$\frac{h c}{\lambda}=\frac{h c}{\lambda_{1}}+\frac{h c}{\lambda_{2}}$

$\frac{1}{\lambda}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}$
$\frac{1}{355}=\frac{1}{680}+\frac{1}{\lambda_{2}}$
$\lambda_{2}=742.77 \mathrm{~nm} \approx 743 \mathrm{~nm}$
(d)

Bohr's model is against the law of electrodynamics.
(b)
Fe^{3+} ion has the following configuration
$\mathrm{Fe}^{3+}=1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{5}$
Hence, ferric ion is quite stable due to half-filled d-orbitals.
(c)

During the experimental verification of de Broglie equation, Davission and Germer confirmed wave nature of electron.
For a given shell, say $n=2, l=0 \therefore m=0$
$l=1 \therefore m=-1,0,+1$
(c)

Anode rays particles are ionised gaseous atoms left after removal of electron.
(c)

P has 5 valence electron; each H has 1 ;
Thus, total electrons $=5+4-1=8$.
(b)

Neutron is composed of ${ }_{+1} p^{1}+{ }_{-1} e^{0}$ and thus, net charge is zero.
(c)

Picture tube of TV set is cathode rays tube.
(d)
s-subshell has only one orbital and that is spherical, hence, s-orbitals are non-directional.
(b)
${ }_{28} \mathrm{Ni}=1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 4 s^{2}, 3 d^{8}$
$\mathrm{Ni}^{2+}=1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 3 d^{8}$

two unpaired electrons
(d)

In ${ }_{1} \mathrm{H}^{3}$, nucleons are 3.
(a)
m can be $\underline{+2,+1}$ and 0 for $3 d$-subshell.
(c)

For Paschen series, $n_{1}=3$ and $n_{2}=4,5,6$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	B	A	B	C	B	B	C	D	B	C	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	C	C	B	C	D	B	D	A	A	C	

