CLASS : XIth DATE :

(b)

(a)

(b)

(c)

(b)

Solutions

PRACTICE PROBLEM

SUBJECT : CHEMISTRY DPP No. : 8

Topic :- STRUCTURE OF ATOM

1

Find λ from $E = \frac{hc}{\lambda}$; It comes out to be 4965 Å, which represents visible region (*i.e.*, in between 3800 – 7600 Å).

2

The ground state configuration of chromium is

$$_{24}$$
Cr = [Ar] $3d^54s^1$

 $\therefore _{24} cr^{2+} = [Ar] 3d^4 4s^0$

3

The atomic number of cesium is 55. The electronic configuration of cesium atom is ${}_{55}Cs = 1s^2, 2s^22p^6, 3s^23p^6, 4s^2, 3d^{10}4p^6, 5s^2, 4d^{10}, 5p^6, 6s^1$

The electronic configuration of cesium atom is $Cs^+ = 1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^64d^{10}, 5s^25p^6, 6s^0$ So, the total number of s-electrons =10,

The total number of p-electrons=24,

The total number of d-electrons=20

eV

$$KE = (1/2)mu^2 =$$
$$\therefore u = \sqrt{\frac{2eV}{m}}$$
(b)

5

Sine, $E \propto -\frac{1}{n^2}$

The energy of an electron in the second orbit will be

$$E_2 = \frac{E_1}{4} = \frac{(-2.18 \times 10^{-18} \text{J})}{4}$$
$$= -5.45 \times 10^{-19} \text{J}$$

6

Velocity of an electron in first orbit of H atom is

$$u = \frac{2.1847 \times 10^8}{1} \text{ cms}^{-1}$$
Hence it is $\frac{1}{1}$ thas compared

Hence, it is $\frac{1}{100}$ th as compared to the velocity of light. **(c)**

7

Energy valu	ies are always additive.
$E_{\text{total}} = E_1 -$	$-E_2$
hc hc l	1C
$\overline{\lambda} = \overline{\lambda_1} + \overline{\lambda_2}$	$\overline{l_2}$
Î	
	E ₁
E	
_	
1 1 1	
$\overline{\lambda} = \overline{\lambda_1} + \overline{\lambda_2}$	
1 1	1
$\overline{355} = \overline{680}$	$+\frac{1}{\lambda_2}$
$\lambda_2 = 742.77$	$nm \approx 743 \text{ nm}$
(d)	
Bohr's mod	el is agains <mark>t the l</mark> aw of <mark>electr</mark> odynamics.
(b)	
Fe ³⁺ ion ha	s the follow <mark>ing c</mark> onfigu <mark>ration</mark>
$Fe^{3+} = 1s^2$,	$2s^2 2p^6, 3s^2 3p^6 3d^5$
Hence, ferr	c ion is quit <mark>e sta</mark> ble due to half-fi <mark>lled <i>d</i>-orbitals.</mark>
(c)	
During the	experiment <mark>al ve</mark> rification of de Broglie equation, Davission and Germer
confirmed v	wave nature of electron.
For a given	shell, say $n = 2, l = 0 \therefore m = 0$
$l=1 \therefore m=$	= -1, 0, + 1
(c)	
Anode rays	particles are ionised gaseous atoms left after removal of electron.
(c)	
P has 5 vale	nce electron; each H has 1;
Thus, total	electrons $= 5 + 4 - 1 = 8$.
(b)	
Neutron is	composed of $_{+1}p^1 + _{-1}e^0$ and thus, net charge is zero.
(c)	
Picture tub	e of TV set is cathode rays tube.
(d)	
<i>s</i> -subshell ł	as only one orbital and that is spherical, hence, <i>s</i> -orbitals are non-directional.
(b)	
$_{28}$ Ni = 1 s^2 ,	$2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^8$
$Ni^{2+} = 1s^2$	$2s^2, 2p^6, 3s^2, 3p^6, 3d^8$

11 11 11 1

two unpaired electrons

17 **(d)** In ${}_{1}\text{H}^{3}$, nucleons are 3.

19 **(a)**

m can be $\underline{+2}, \underline{+1}$ and 0 for 3*d*-subshell.

20 **(c)** For Paschen series, $n_1 = 3$ and $n_2 = 4, 5, 6$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	В	А	В	C	В	В	C	D	В	C		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	С	C	В	C	D	В	D	А	A	C		

