DPPP DAILY PRACTICE PROBLEMS									
CLASS : XIth DATE :		Solutions	SUBJECT : CHEMISTRY DPP No. : 7						
	Topic :-	STRUCTURE OF	ΑΤΟΜ						
1	(a) λ for visible light is in the range $E = \frac{hc}{\lambda}$.	ge of 400 to 780 nm.							
3	This, it is in the range of electr (a)	ron volt (eV).							
4	To cross over threshold energe (d) $\Delta E = hv = \frac{hc}{\lambda}$	gy level.							
5	$\lambda = \frac{hc}{\Delta E} = \frac{6.62 \times 10^{-34} \times 3 \times 10^{-14}}{4.4 \times 10^{-14}}$ $= 4.52 \times 10^{-12} \text{m}$	<u>108</u>							
5	$r_{2}Be^{3+} = \frac{r_{1}H}{4} \times 2^{2}$ $\left(\because r_{2}H = r_{1H} \times 2^{2} \text{ and } r_{n}Be^{3+} \right)$	$r = \frac{r_n H}{n}$							
6	(b)								
7	An experimental fact. (d) The transition is almost insta-	atan aque process							
8	(b) The values of m are $-l$ to $+l$	through zero							
9	(b) A fact.	tinougn zero.							
10	(c) X-rays are light wayes or a for	m of light energy.							
11	(c)	<u> </u>							
12	$\Delta x \cdot \Delta v \ge \frac{1}{4\pi m}$ (d)								

$$\overline{v} = \frac{1}{\lambda} = R'Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

For shortest wavelength (maximum energy) in Lyman series of hydrogen $Z = 1, n_1 = 1, n_2$ $\rightarrow \infty$ and

 $\lambda = x$ 1 _,

$$\frac{1}{x} = R^{t}$$

For longest wavelength (minimum energy) in Balmer series of He⁺, Z = 2 and $n_1 = 2$, $n_2 = 3$

 $\frac{1}{\lambda} = R' 2^2 \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$ $\frac{1}{\lambda} = \frac{4}{x} \left[\frac{1}{4} - \frac{1}{9} \right]$ $\frac{1}{\lambda} = \frac{4}{x} \frac{5}{36}$ $\lambda = \frac{9x}{5}$ 13 (d) Rydberg is an unit of energy. 14 (a) Neutrons are neutral particles. 15 (d) $+\frac{1}{2}$ and $-\frac{1}{2}$ spinning produces angular momentum equal to Z - component of angular momentum which is given as $m_s(h/2\pi)$ 16 (c) Since, $hv = \text{work function} + (1/2)mu^2$. 17 (d) $\lambda = \frac{h}{p}$ $v = \frac{c}{\lambda}$ $v = \frac{3 \times 10^8 \times 1.1 \times 10^{-23}}{6.6 \times 10^{-34}}$ $= 5.0 \times 10^{18}$ Hz 18 **(b)** $E = \frac{hc}{\lambda} = hv$ 19 **(b)** Step 1 Calculate energy given to I_2 molecule by $\frac{hc}{\lambda}$ Step 2 Calculate energy used to break I_2 molecule. The difference in above two energies will be the KE of two I atoms 20 (a)

It is a fact.

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	Α	C	A	D	C	В	D	В	В	С		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	С	D	D	A	D	C	D	В	В	А		

