CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY DPP No. : 6

Topic :- STRUCTURE OF ATOM

1
(a)
$E=3 \times 10^{-12} \mathrm{ergs}$
$\lambda=$?
$h=6.62 \times 10^{-27} \mathrm{ergs}$
$c=3 \times 10^{10} \mathrm{cms}^{-1}$
$E=\frac{h c}{\lambda}$
$3 \times 10^{-2}=\frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{\lambda}$
$\lambda=\frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{3 \times 10^{-12}}$
$=6.62 \times 10^{-5} \mathrm{~cm}$
$=662 \times 10^{-7} \mathrm{~cm}$
$=662 \times 10^{-9} \mathrm{~m}$
$=662 \mathrm{~nm}$.
3
(a)

1. $1 s$
2. $2 s$
3. $2 p$
4. $3 d$
5. $3 d$

In the absence of any field, $3 d$ in (D) and (E) will be of equal energy.
(c)

Zeeman effect is splitting up of the lines of an emission spectrum in a magnetic field.
4
(d)

Bohr radius for nth orbit $=0.53 \times \frac{n^{2}}{Z}$
Where, $Z=$ atomic number
\therefore Bohr radius of 2 nd orbit of $\mathrm{Be}^{3+}=\frac{0.53 \times(2)^{3}}{4}$

$$
=0.53 \AA ̊
$$

(d) Bohr radius of 1 st orbit of $\mathrm{H}=\frac{0.53 \times(1)^{2}}{1}$

Hence, Bohr's radius of 2 nd orbit of Be^{3+} is equal to that of first orbit of hydrogen.
(c)
$\lambda=\frac{h}{m v}$
$\therefore m v=\frac{6.626 \times 10^{-34}}{5200 \times 10^{-10}}=1.274 \times 10^{-27}$
For electron, $m=9.1 \times 10^{-31} \mathrm{~kg}$
$9.1 \times 10^{-31} \times v=1.274 \times 10^{-27}$
$v=1400 \mathrm{~m} / \mathrm{s}$
(b)
($n+l$) is more for a subshell, more will be its energy.
(c)
$[\mathrm{Ar}] 3 d^{10}, 4 s^{1}$ (atomic no. 29) electronic configuration belongs to copper.
(a)
Li^{+}has charge of 1 proton due to loss of electron.
(c)

Mass or proton $=1.672614 \times 10^{27} \mathrm{~kg}$
Mass of electron $=1.60211 \times 10^{-31} \mathrm{~kg}$
\therefore Mass of proton/Mass of electron $=\frac{1}{1837}$
(c)

Follow: $E_{n}=E_{1} / n^{2}$
(a)

Orbital angular momentum $=\sqrt{l(l+1)} \times \frac{h}{2 \pi}$
For p-electron $(l=1)=\sqrt{1(1+1)} \times \frac{h}{2 \pi}$
$=\sqrt{2} \times \frac{h}{2 \pi}=\frac{h}{\sqrt{2} \pi}$
(a)

Transition from any higher level to $n=1$ gives Lyman series.
(a)

Total energy $=\frac{-e^{2}}{2 r_{n}}=-3.4 \mathrm{eV}=\frac{E_{1}}{n^{2}}$
$\therefore n^{2}=\frac{-13.6}{-3.4}=4 \therefore n=2$
The velocity in II orbit
$=\frac{u_{1}}{2}=\frac{2.18 \times 10^{8}}{2} \mathrm{~cm} \mathrm{sec}^{-1}$
$\therefore \lambda=\frac{h}{m u}=\frac{6.6 \times 10^{-27} \times 2}{9.108 \times 10^{-28} \times 2.18 \times 10^{8}}=6.6 \times 10^{-10}$
(c)

The orbital $d_{Z^{2}}$ has 2 lobes.
(c)

Nucleus of an atom is small in size but carries the entire mass i.e., contains all the neutrons and protons.
(a)

In $\mathrm{C}_{2} \mathrm{H}_{2}$ total electrons $=6+6+1+1=14$.
(a)
Cu^{+}has $3 d^{10}$ configuration.
(a)

Only 2 electrons in p-orbitals can have $m=0$.

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	A	C	D	C	B	C	A	C	C			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	C	A	A	A	C	C	A	A	A	C			

