AILY PRACTICE PROBLEM **CLASS : XIth SUBJECT : CHEMISTRY Solutions** DPP No. : 6 **DATE: Topic :- STRUCTURE OF ATOM** 1 (a)  $E = 3 \times 10^{-12}$ ergs  $\lambda = ?$  $h = 6.62 \times 10^{-27}$  ergs  $c = 3 \times 10^{10} \text{cms}^{-1}$  $E = \frac{hc}{\lambda}$  $3 \times 10^{-2} = \frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{\lambda}$  $\lambda = \frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{3 \times 10^{-12}}$  $= 6.62 \times 10^{-5}$  cm  $= 662 \times 10^{-7}$  cm  $= 662 \times 10^{-9} \text{m}$ = 662 nm.3 (a) 1. 1*s* 2. 2*s* 3. 2p 4. 3d5. 3dIn the absence of any field, 3*d* in (D) and (E) will be of equal energy. 3 (c) Zeeman effect is splitting up of the lines of an emission spectrum in a magnetic field. 4 (d)

Bohr radius for *n*th orbit  $= 0.53 \times \frac{n^2}{Z}$ Where, *Z* = atomic number : Bohr radius of 2nd orbit of Be<sup>3+</sup> =  $\frac{0.53 \times (2)^3}{4}$ 

= 0.53 Å  
(d) Bohr radius of 1st orbit of H = 
$$\frac{0.53 \times (1)^2}{1}$$

Hence, Bohr's radius of 2nd orbit of  $Be^{3+}$  is equal to that of first orbit of hydrogen.

5

(c)  $\lambda = \frac{h}{mv}$  $\therefore mv = \frac{6.626 \times 10^{-34}}{5200 \times 10^{-10}} = 1.274 \times 10^{-27}$ For electron,  $m = 9.1 \times 10^{-31}$ kg  $9.1 \times 10^{-31} \times v = 1.274 \times 10^{-27}$ v = 1400 m/s6 (b) (n + l) is more for a subshell, more will be its energy. 7 (c)  $[Ar]3d^{10}, 4s^1$  (atomic no. 29) electronic configuration belongs to copper. 8 (a) Li<sup>+</sup> has charge of 1 proton due to loss of electron. 9 (c) Mass or proton =  $1.672614 \times 10^{27}$ kg Mass of electron =  $1.60211 \times 10^{-31}$ kg : Mass of proton/Mass of electron  $=\frac{1}{1837}$ 10 (c) Follow :  $E_n = E_1/n^2$ 12 (a) Orbital angular momentum =  $\sqrt{l(l+1)} \times \frac{h}{2\pi}$ For *p*-electron  $(l = 1) = \sqrt{1(1+1)} \times \frac{h}{2\pi}$  $=\sqrt{2} \times \frac{h}{2\pi} = \frac{h}{\sqrt{2}\pi}$ 13 (a) Transition from any higher level to n = 1 gives Lyman series. 14 (a) Total energy =  $\frac{-e^2}{2r_n}$  = -3.4 eV =  $\frac{E_1}{n^2}$  $\therefore n^2 = \frac{-13.6}{-3.4} = 4 \therefore n = 2$ The velocity in II orbit  $=\frac{u_1}{2}=\frac{2.18\times10^8}{2}$  cm sec<sup>-1</sup>

$$\therefore \lambda = \frac{h}{mu} = \frac{6.6 \times 10^{-27} \times 2}{9.108 \times 10^{-28} \times 2.18 \times 10^8} = 6.6 \times 10^{-10}$$

(c)

The orbital  $d_{z^2}$  has 2 lobes.

## 16 **(c)**

Nucleus of an atom is small in size but carries the entire mass *i.e.*, contains all the neutrons and protons.

17 **(a)** 

In  $C_2H_2$  total electrons = 6 + 6 + 1 + 1 = 14.

18 **(a)** 

 $Cu^+$  has  $3d^{10}$  configuration.

## 19 **(a)**

Only 2 electrons in *p*-orbitals can have m = 0.



| ANSWER-KEY |    |    |    |    |    |    |    |    |    |    |
|------------|----|----|----|----|----|----|----|----|----|----|
| Q.         | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| Α.         | Α  | А  | C  | D  | C  | В  | C  | А  | C  | C  |
|            |    |    |    |    |    |    |    |    |    |    |
| Q.         | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Α.         | C  | А  | A  | A  | C  | C  | А  | А  | A  | C  |
|            |    |    |    |    |    |    |    |    |    |    |

