

CLASS: XIth
DATE:
SUBJECT: CHEMISTRY
DPP No.: 5

Topic :- STRUCTURE OF ATOM

1.	The total number of pr a) 300	otons present in all the ob) 350	elements upto 'Zn' in the c) 465	e periodic table is: d)450		
2.		is 5×10^{-3} s, what is the b) 2×10^{2} s ⁻¹	frequency? c) $23 \times 10^3 \text{s}^{-1}$	d) $5 \times 10^2 \text{s}^{-1}$		
3.	The increasing order (land alpha particle (α) value	lowest first) of the value will be b) e,p,n,α	e of $\frac{e}{m}$ for electron (e) , proof (e) , $($	roton (p) , neutron (n) d) n , p , α , e		
4.	Orbitals processing the a) Hybrid orbitals	e sam <mark>e energy are c</mark> alled b) <mark>Valenc</mark> y orbitals	: c) <i>d</i> -orbitals	d) Degenerate orbitals		
5.	Which set has the same a) N,P,V	e nu <mark>mber</mark> of unpaired el b) Na,P,Cl	ectrons in their ground s c) Na ⁺ ,Mg ²⁺ ,Al	state? d) Cl [–] ,Fe ³⁺ ,Cr ³⁺		
6.	Wavelength of a photon is 2.0×10^{-11} m, $h = 6.6 \times 10^{-34}$ Js. The momentum of photon is: a) 3.3×10^{-23} kg m s ⁻¹ b) 3.3×10^{22} kg m s ⁻¹ c) 1.452×10^{-44} kg m s ⁻¹ d) 6.89×10^{43} kg m s ⁻¹					
7.	The atomic number of an element is 35 and its mass is 81. The number of electrons in its outermost shell is					
	a) 3	b)5	c) 7	d) 9		
8.	According to Dalton's atomic theory, the smallest particle which is capable of independent existence is:					
	a) Element	b) Atom	c) Molecule	d) Ion		

9.	The possibility of finding a) Rutherford	ng an electron in an orbi b) Bohr	tal was conceived by: c) Heisenberg	d) Schrödinger		
10.	Which statement is/are correct? Volume of proton is approximately $(4/3 \pi r^3) = 1.5 \times 10^{-38} \mathrm{cm}^3$ b) The radius electron is $42.8 \times 10^{-13} \mathrm{cm}$ c) The density of nucleus is $10^{14} \mathrm{g/cm}^3$ d) All of the above					
11.	X-rays cannot penetrat a) Wood	e through a sheet of: b) Paper	c) Aluminium	d) Lead		
12.	How many electrons caa) 2	nn fit into the orbitals tha	at comprise the 3rd qua c) 18	ntum shell? d)32		
13.	The total values of mag a) 9	netic quantum number b) 6	of an electron when the c) 4	value of $n = 2$ is: d) 2		
14.	transition, $n=4$ to $n=2$	hydrogen atomic spectron of He ⁺ spectrum? b) $n = 3$ to $n = 2$				
15.	According to $(n + l)$ ru a) $(n - 1)d$	le after completing $'np'$; b) $(n+1)s$	level the electron enters	to: $d)(n+1)p$		
16.	If the series limit of wavelength of the Lyman series for the hydrogen atom is 912 Å, then the series limit of wavelength for the Balmer series of the hydrogen atom is: a) 912 Å b) 912 \times 2 Å c) 912 \times 4 Å d) 912/2 Å					
17.	The best metal to be us a) Potassium	ed for photoemission is b) Sodium	c) Cesium	d) Lithium		
18.	The correct Schröding potential energy is: a) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} +$ b) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} +$ c) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} +$	$\frac{8\pi^2}{mh^2}(E - V)\Psi = 0$ $\frac{8\pi m}{h^2}(E - V)\Psi = 0$	an electron with E as	s total energy and V as		

d)
$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi m^2}{h} (E - V) \Psi = 0$$

- 19. Electronic configuration of tritium is : a) $1s^1$ b) $1s^2$, $2s^2$

- c) $1s^1, 2s^1$
- d) None of these

- 20. The ratio of e/m, i.e., specific charge for a cathode ray:
 - a) Has the smallest value when the discharge tube is filled with H₂
 - b) Is constant
 - c) Varies with the atomic number of gas in the discharge tube
 - d) Varies with the atomic number of an element forming the cathode

