CLASS : XIth
SUBJECT : CHEMISTRY
DATE :
DPP No. : 5

TOpic:-STRUCTURE OF ATOM

1. The total number of protons present in all the elements upto ' Zn^{\prime} in the periodic table is:
a) 300
b) 350
c) 465
d) 450
2. Time period of a wave is $5 \times 10^{-3} \mathrm{~s}$, what is the frequency?
a) $5 \times 10^{-3} \mathrm{~s}^{-1}$
b) $2 \times 10^{2} \mathrm{~s}^{-1}$
c) $23 \times 10^{3} \mathrm{~s}^{-1}$
d) $5 \times 10^{2} \mathrm{~s}^{-1}$
3. The increasing order (lowest first) of the value of $\frac{e}{m}$ for electron (e), $\operatorname{proton}(p)$, neutron (n) and alpha particle (α) will be
a) n, α, p, e
b) e, p, n, α
c) n, p, e, α
d) n, p, α, e
4. Orbitals processing the same energy are called:
a) Hybrid orbitals
b) Valency orbitals
c) d-orbitals
d) Degenerate orbitals
5. Which set has the same number of unpaired electrons in their ground state?
a) $\mathrm{N}, \mathrm{P}, \mathrm{V}$
b) $\mathrm{Na}, \mathrm{P}, \mathrm{Cl}$
c) $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}$
d) $\mathrm{Cl}^{-}, \mathrm{Fe}^{3+}, \mathrm{Cr}^{3+}$
6. Wavelength of a photon is $2.0 \times 10^{-11} \mathrm{~m}, h=6.6 \times 10^{-34} \mathrm{Js}$. The momentum of photon is:
a) $3.3 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
b) $3.3 \times 10^{22} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
c) $1.452 \times 10^{-44} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
d) $6.89 \times 10^{43} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
7. The atomic number of an element is 35 and its mass is 81 . The number of electrons in its outermost shell is
a) 3
b) 5
c) 7
d) 9
8. According to Dalton's atomic theory, the smallest particle which is capable of independent existence is:
a) Element
b) Atom
c) Molecule
d) Ion
9. The possibility of finding an electron in an orbital was conceived by:
a) Rutherford
b) Bohr
c) Heisenberg
d) Schrödinger
10. Which statement is/are correct?
a) Volume of proton is approximately
a) $\left(4 / 3 \pi r^{3}\right)=1.5 \times 10^{-38} \mathrm{~cm}^{3}$
b) The radius electron is $42.8 \times 10^{-13} \mathrm{~cm}$
c) The density of nucleus is $10^{14} \mathrm{~g} / \mathrm{cm}^{3}$
d) All of the above
11. X-rays cannot penetrate through a sheet of:
a) Wood
b) Paper
c) Aluminium
d) Lead
12. How many electrons can fit into the orbitals that comprise the 3rd quantum shell?
a) 2
b) 8
c) 18
d) 32
13. The total values of magnetic quantum number of an electron when the value of $n=2$ is:
a) 9
b) 6
c) 4
d) 2
14. Which transition in the hydrogen atomic spectrum will have the same wavelength as the transition, $n=4$ to $n=2$ of He^{+}spectrum?
a) $n=4$ to $n=3$
b) $n=3$ to $n=2$
c) $n=4$ to $n=2$
d) $n=2$ to $n=1$
15. According to $(n+l)$ rule after completing ' $n p$ ' level the electron enters to:
a) $(n-1) d$
b) $(n+1) s$
c) $n d$
d) $(n+1) p$
16. If the series limit of wavelength of the Lyman series for the hydrogen atom is $912 \AA$, then the series limit of wavelength for the Balmer series of the hydrogen atom is:
a) $912 \AA$
b) $912 \times 2 \AA$
c) $912 \times 4 \AA$
d) $912 / 2 \AA$
17. The best metal to be used for photoemission is:
a) Potassium
b) Sodium
c) Cesium
d) Lithium
18. The correct Schrödinger's wave equation of an electron with E as total energy and V as potential energy is:
a) $\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}+\frac{8 \pi^{2}}{m h^{2}}(E-V) \Psi=0$
b) $\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}+\frac{8 \pi m}{h^{2}}(E-V) \Psi=0$
c) $\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}+\frac{8 \pi^{2} m}{h^{2}}(E-V) \Psi=0$
d) $\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}+\frac{8 \pi m^{2}}{h}(E-V) \Psi=0$
19. Electronic configuration of tritium is :
a) $1 s^{1}$
b) $1 s^{2}, 2 s^{2}$
c) $1 s^{1}, 2 s^{1}$
d) None of these
20. The ratio of e / m,i.e., specific charge for a cathode ray:
a) Has the smallest value when the discharge tube is filled with H_{2} b) Is constant
c) Varies with the atomic number of gas in the discharge tube
d) Varies with the atomic number of an element forming the cathode

