CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY
DPP No. : 5

Topic :- STRUCTURE OF ATOM

1

2
(c)

Total no. of protons in all the elements from at. no. 1 to at no. $n=n \times(n+1) / 2$.
(b)

Frequency $(n)=\frac{1}{\text { time period }(T)}$
Here, $\quad T=5 \times 10^{-3} \mathrm{~S}$

$$
n=\frac{1}{5 \times 10^{-3}}=0.2 \times 10^{3}=2 \times 10^{2} \mathrm{~s}^{-1}
$$

(a)
$\frac{e}{m}$ for: (i) neutron $=\frac{0}{1}=0$
(ii) α-particle $=\frac{2}{4}=0.5$
(iii) proton $=\frac{1}{1}=1$
(iv) electron $=\frac{1}{1 / 1837}=1837$
(d)

It is the definition of degenerate orbitals.
(a)

N and P have 3 unpaired electrons in $2 p$ and $3 p$ respectively; V has 3 unpaired electrons in $3 d$.
(a)

Momentum of photon $=m u=\frac{h}{\lambda}\left(\because \lambda=\frac{h}{m u}\right)$
$=\frac{6.6 \times 10^{-34}}{2 \times 10^{-11}}=3.3 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
(c)
$35=1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 4 s^{2}, 3 d^{10}, 4 p^{5}$
Thus, it contains 7 electrons in 4th or outermost shell
(b)

Follow Dalton's assumptions.
(d)

Schrödinger proposed the concept of orbitals -a three-dimensional region in which
probability for finding electron is maximum.
(d)

All are facts
(d)

Pb sheets cut X -rays.
(c)

Maximum no. of electron in an orbit $=2 n^{2}$.
(c)

Total values of ${ }^{\prime} m$ ' in a given shell $=n^{2}$.
(d)
$\frac{1}{\lambda}=Z^{2}, R_{H}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$
For $\mathrm{He}^{+}, \frac{1}{\lambda}=2^{2} \cdot R_{H}\left[\frac{1}{2^{2}}-\frac{1}{4^{2}}\right]=4 \times \frac{3}{16}=\frac{3}{4}$
For $H, \frac{1}{\lambda}=1^{2} \cdot R_{H}\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]=\frac{3}{4}$
Hence, for hydrogen $n=2$ to $n=1$.
(b)

After filling up of electron in $n p$, the next electron occupies $(n+1) s$ level.
(c)
$\frac{1}{\lambda_{\text {Lyman }}}=R_{\mathrm{H}}\left[\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right] ;$
$\frac{1}{\lambda_{\text {Balmer }}}=R_{\mathrm{H}}\left[\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right]$
(c)

Work function for Cs is minimum.
(c)

It is famous Schrödinger wave equation.
(a)

Tritium has only one electron.
(b)

A characteristic of cathode rays particles (electrons).

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	C	B	A	D	A	A	C	B	D	D			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	D	C	C	D	B	C	C	C	A	B			

