CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY
DPP No. : 4

Topic :- STRUCTURE OF ATOM

1

2
(d)

Ions have charge, different size and configuration than atom.
(c)
H^{-}has two electrons.
$\frac{1}{\lambda}=Z^{2} \cdot R_{H}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$
$\Rightarrow \frac{1}{\lambda}=(Z)^{2} \cdot R_{H}\left\{\frac{1}{1}-\frac{1}{4}\right\}=\frac{3}{4} R_{H} Z^{2}$
$\therefore \lambda \propto \frac{1}{Z^{2}}$
Hence for shortest λ, Z must be maximum, which is for Li^{2+}.
(c)

Element with atomic no. 17 has $3 s^{2} 3 p^{5}$ valence shell.
(b)

The electronic configuration of element with at. no. 105 is:
$1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{10}, 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14}$,
$5 s^{2} 5 p^{6} 5 d^{10} 5 f^{14}, 6 s^{2} 6 p^{6} 6 d^{3}, 7 s^{2}$
for $5 f(n+l)=5+3=8$
for $6 d(n+l)=6+2=8$
(b)

Average mass $=(\mathrm{m}+0.5)=$
$\frac{m \times 4+(m+1) \times 1+(m+2) \times 1}{6}=\frac{6 m+3}{6}$
(d)
$r_{n}=\frac{r_{1} n^{2}}{Z} ; r_{1}$ is radius of H -atom.
(d)

According to Bohr model,
Radius of hydrogen atom
$\left(r_{n}\right)=\frac{0.529 \times n^{2}}{Z} \AA$
Where, $n=$ number of orbit

$$
\begin{aligned}
& Z=\text { atomic number } \\
& r_{3}=\frac{0.529 \times(3)^{2}}{1}=4.761 \AA
\end{aligned}
$$

(a)
de Broglie equation is $\lambda=\frac{h}{m u}$
(b)
$E_{3}=E_{1}+E_{2}$ or $\frac{h c}{\lambda_{3}}=\frac{h c}{\lambda_{1}}+\frac{h c}{\lambda_{2}}$
(c)
e.g., oxygen has $0^{16}, 0^{17}$ and 0^{18} isotopes.
(d)

Energy order : $5 s<4 d<4 f$.
(a)
$1 \mathrm{~F}=10^{-13} \mathrm{~cm}=10^{-15} \mathrm{~m}$
(b)

The difference of energy is given out.
(b)
$E_{X}>E_{V R} \therefore \lambda_{V R}>\lambda_{X}$ or X is UV region.
(c)

According to aufbau principle, as electron enters the orbital of lowest energy first and subsequent electrons are fed in the order of increasing energies. The relative energies of various orbital in increasing order are
$1 s, 2 s, 2 p, 3 s, 3 p, 4 s, 3 d, 4 p, 5 s, 4 d, 5 p, 6 s, 4 f, 5 d, 6 p, 7 s$
(b)

No. of (valence) electrons in $\mathrm{NH}_{4}^{+}=8$,
No. of valence electron in $\mathrm{N},($ i.e., 5$)+$ No. of e in 4H, (i.e.,4) -1 (of + ve charge).
(d)

Hydrogen spectrum is an emission spectrum. It shows the presence of quantized energy levels in hydrogen atom.

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	D	C	B	A	C	B	B	D	D	A	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	B	C	D	A	B	B	C	B	C	D	

