CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY
DPP No. : 3

Topic :-STRUCTURE OF ATOM

1
(c)
$E_{n}=\frac{E_{1}}{n^{2}} \times Z^{2}$
$=\frac{-13.6}{4} \times 9=-30.6 \mathrm{eV}$
(for the excited state, $n=2$ and for Li^{2+} ion, $Z=3$)
(b)

Given, azimuthal quantum number $(l)=2$
Number of orbital's $=(2 l+1)$
$=(2 \times 2+1)=4+1=5$
3

4
(b)

Heaviest atom has mass no. 238,(i.e., $9_{2} \mathrm{U}^{238}$) and lighter one is ${ }_{1} \mathrm{H}^{1}$.
(d)
$\lambda=\frac{h}{m u}$.
(c)
p_{x} orbital has two lobes on x-axis.
(d)
f-orbital has 7 orientations.
(b)

III shell is more closer to nucleus.
(b)

Ar and Ca^{2+} are isoelectronic species as they have same number of electrons, i.e., 18.
(b)
$p=m u=\frac{h}{\lambda}$ and $E=\frac{h c}{\lambda}$
$\therefore E=\frac{c}{\lambda} \cdot p \cdot \lambda=c \cdot p$

11
(a)
$\Delta x . \Delta v \geq \frac{h}{4 \pi m}$

$$
\begin{aligned}
\Delta x \geq & \frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 25 \times 10^{-3} \times 10^{-5}} \\
& =2.10 \times 10^{-28} \mathrm{~m}
\end{aligned}
$$

(d)

Mass of neutron $=1.675 \times 10^{-27} \mathrm{~kg}$.
(c)
$\lambda=\frac{h}{m u}=\frac{6.62 \times 10^{-34}}{66 \times 10^{3} \times 1}$
(c)
$n=4$ (4th shell)
$l=2(d$-subshell $)$
$m_{1}=-2\left(d_{x y}\right.$ orbital)
$s=+\frac{1}{2}(\uparrow)$
Hence, electron belongs to 4d-orbital.
(d)

The four lobes of $d_{x^{2}-y^{2}}$ orbital are lying along x and y axes, while the two lobes of $d_{z^{2}}$
orbital are lying along z-axis, and contain a ring of negative charge surrounding the nucleus in $x y$ plane
$2 s$ orbitals has one spherical node, where electron density is zero
p-orbital have direction character
Orbital $\rightarrow p_{z} \quad p_{x} \quad p_{y}$
$m \rightarrow 0 \pm 1 \quad \pm 1$
Nodal plane $\rightarrow x y \quad y z \quad z x$
(c)
$d_{x y}$ orbital lies at 45° angle in between x-and y-axes.
(d)

According to Pauli exclusion principle.
(b)
$E=\frac{h c}{\lambda}$.
(d)

Cu has configuration $[\mathrm{Ar}] 3 d^{10}, 4 s^{1}$; the two electrons are lost, one from $4 s^{1}$ and one from 3 d^{10}.

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	C	B	B	D	C	D	D	B	B	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	D	C	B	C	D	C	D	B	D			

