

CLASS: XIth DATE:

Solutions

SUBJECT: CHEMISTRY

DPP No. : 3

Topic:-STRUCTURE OF ATOM

1 (c)

$$E_n = \frac{E_1}{n^2} \times Z^2$$

= $\frac{-13.6}{4} \times 9 = -30.6 \text{ eV}$

(for the excited state, n = 2 and for Li²⁺ion, Z = 3)

2 **(b**)

Given, azimuthal quantum number (l)=2

Number of orbital's = (2l+1)

$$=(2 \times 2 + 1) = 4 + 1 = 5$$

3 **(b**)

Heaviest atom has mass no. 238, (i.e., $_{92}U^{238}$) and lighter one is $_1H^1$.

4 **(d)**

$$\lambda = \frac{h}{mu}.$$

5 **(c**)

 p_x orbital has two lobes on x-axis.

6 **(d**

f-orbital has 7 orientations.

8 **(b**)

III shell is more closer to nucleus.

9 **(b**)

Ar and Ca^{2+} are isoelectronic species as they have same number of electrons, *i.e.*, 18.

10 **(b**)

$$p = mu = \frac{h}{\lambda}$$
 and $E = \frac{hc}{\lambda}$
 $\therefore E = \frac{c}{\lambda} \cdot p \cdot \lambda = c \cdot p$

11 **(a**

$$\Delta x.\Delta v \ge \frac{h}{4\pi m}$$

$$\Delta x \ge \frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 25 \times 10^{-3} \times 10^{-5}}$$
$$= 2.10 \times 10^{-28} \text{m}$$

12 **(d)**

Mass of neutron = 1.675×10^{-27} kg.

13 **(c**)

$$\lambda = \frac{h}{mu} = \frac{6.62 \times 10^{-34}}{66 \times 10^3 \times 1}$$

15 **(c)**

n = 4(4th shell)

l = 2(d-subshell)

$$m_1 = -2(d_{xy} \text{ orbital})$$

$$s=+\frac{1}{2}(\uparrow)$$

Hence, electron belongs to 4d-orbital.

16 **(d**)

The four lobes of $d_{x^2-y^2}$ orbital are lying along x and y axes, while the two lobes of d_{z^2} orbital are lying along z-axis, and contain a ring of negative charge surrounding the nucleus in xy plane

2s orbitals has one sph<mark>erical</mark> node, where electron density is zero *p*-orbital have direction character

Orbital
$$\rightarrow p_z$$
 p_x p_y

$$m \rightarrow 0 \pm 1 \pm 1$$

Nodal plane $\rightarrow xy \quad yz \quad zx$

17 (c)

 d_{xy} orbital lies at 45° angle in between x-and y-axes.

18 **(d)**

According to Pauli exclusion principle.

19 **(b)**

$$E = \frac{hc}{\lambda}.$$

20 **(d)**

Cu has configuration [Ar] $3d^{10}$, $4s^{1}$; the two electrons are lost, one from $4s^{1}$ and one from $3d^{10}$.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
Α.	С	В	В	D	C	D	D	В	В	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	D	С	В	С	D	С	D	В	D

