CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY DPP No. : 10

Topic :- STRUCTURE OF ATOM

1
(d)

The values of quantum number will give idea about the last subshell of element. From that value we can find the atomic number of element, $n=3$ means 3rd-shell $l=0$
$\left.\begin{array}{l}l=0\end{array}\right\}$ means subshell
It means it is $3 s$-subshell which can have 1 or 2 electrons.
\therefore Configuration of element is
$1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{1-2}$
\therefore Atomic i.e., number is 11 or 12 .
2
(a)
$h v=$ work function $+K E$;
or $h v=h v_{0}+K E$;
$h v_{0}=$ work function $=\frac{h c}{\lambda_{0}} ;$
where λ_{0} is threshold wavelength.
(a)

The Sc atom has $3 d^{1}, 4 s^{2}$ configuration.
(a)

Wave number of spectral line in emission spectrum of hydrogen,
$\bar{v}=R_{H}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
Given, $\bar{v}=\frac{8}{9} R_{H}$
On putting the value of \bar{v} in Eq. (i), we get
$\frac{8}{9}=R_{H}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
$\frac{8}{9}=\frac{1}{(1)^{2}}-\frac{1}{n_{2}^{2}}$
$\frac{8}{9}-1=-\frac{1}{n_{2}^{2}}$
$\frac{1}{3}=\frac{1}{n_{2}}$

$$
\therefore \quad n_{2}=3
$$

Hence, electron jumps from $n_{2}=3$ to $n_{1}=1$
(b)
J.J. Thomson (1987) was first experimentally demonstrated particle nature of electron. It was first of all proposed by Millikan's oil drop experiment.
(b)

Angular momentum for n and $(n+1)$ shells are $\frac{n h}{2 \pi}$ and $(n+1) \frac{h}{2 \pi}$.
(b)

The volume of nucleus : volume of atom, $\frac{4}{3} \pi r_{n}^{3}: \frac{4}{3} \pi r^{3}$ atom.
(c)
O^{2-} has 10 electrons but 8 neutrons $\left({ }_{8} \mathrm{O}^{16}\right)$.
(c)

Possible mol. wt. may be $18,20,19,20,22,21$ respectively for $\mathrm{H}^{1} \mathrm{H}^{1} \mathrm{O}^{16}, \mathrm{H}^{2} \mathrm{H}^{2} \mathrm{O}^{16}, \mathrm{H}^{1} \mathrm{H}^{2} \mathrm{O}^{16}, \mathrm{H}^{1}$ $\mathrm{H}^{1} \mathrm{O}^{18}, \mathrm{H}^{2} \mathrm{H}^{2} \mathrm{O}^{18}, \mathrm{H}^{1} \mathrm{H}^{2} \mathrm{O}^{18}$.
(c)

Magnetic moment $=\sqrt{[n(n+2)]}$ where n is number of unpaired electrons.
(d)

Hertz for the first time noticed the effect.
(b)
$\mathrm{Cr}(24):[\mathrm{Ar}] 3 d^{5} 4 s^{1}$
$\mathrm{Cr}^{3+}:[\mathrm{Ar}] 3 d^{3} 4 s^{0}$
(d)

A part of energy of photon ($h v$-work function) is used for kinetic energy of electrons.
(b)

$$
\begin{aligned}
\frac{e}{m} \text { for electron }(e) & =\frac{1.6 \times 10^{-19}}{9.1 \times 10^{-28}} \\
& =1.758 \times 10^{8} \\
\frac{e}{m} \text { for proton }(p) & =\frac{1.6 \times 10^{-19}}{1.672 \times 10^{-24}} \\
& =9.56 \times 10^{4} \\
\frac{e}{m} \text { for neutron }(n) & =\frac{0}{1.675 \times 10^{-24}}=0 \\
\frac{e}{m} \text { for } \alpha-\text { particle } & =\frac{2}{4}=0.5
\end{aligned}
$$

Hence, the increasing order of $\frac{e}{m}$ is as

$$
n<\alpha<p<e
$$

(d)

Ionisation energy of nitrogen =energy of photon

$$
=N h \frac{c}{\lambda}
$$

where, $N=6.02 \times 10^{23}$

$$
c=3 \times 10^{8} \mathrm{~ms}^{-1}
$$

$$
\begin{aligned}
& \lambda=854 \AA=854 \times 10^{-10} \mathrm{~m} \\
& =\frac{6.02 \times 10^{23} \times 6.6 \times 10^{-34} \times 3 \times 10^{8}}{854 \times 10^{-10}} \\
& =1.4 \times 10^{6} \mathrm{~J} \mathrm{~mol}^{-1} \\
& =1.4 \times 10^{3} \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { (a) } \\
& e / m \text { for proton }=\frac{1}{1} ; e / m \text { for } \alpha=\frac{2}{4}
\end{aligned}
$$

(a)
$E=n \frac{h c}{\lambda}$
$h=6.6 \times 10^{-34} \mathrm{Js}$ or $1 \mathrm{~J}=\frac{n \times 6.6 \times 10^{-34} \times 3 \times 10^{8}}{4000 \times 10^{-10}}$
(c)

We know that the energy is emitted in the form of quanta and is given by,
$\Delta E=h v=\frac{h c}{\lambda}$
or $\lambda=\frac{h c}{\Delta E}$
$=\frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{3 \times 1.6 \times 10^{-12}}$
$=4.14 \times 10^{-5} \mathrm{~cm}$
$=4140 \AA$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	D	A	A	A	B	B	B	C	D	C	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	C	D	B	D	B	D	A	A	C	B	

