CLASS : XIth **DATE:**

(d)

(a)

(a)

(a)

DAILY PRACTICE PROBLEMS

Solutions

SUBJECT : CHEMISTRY DPP No. : 10

Topic :- STRUCTURE OF ATOM

1

The values of quantum number will give idea about the last subshell of element. From that value we can find the atomic number of element, n = 3 means 3rd-shell

l = 0m = 0}means subshell

It means it is 3s-subshell which can have 1 or 2 electrons.

: Configuration of element is

 $1s^2, 2s^2, 2p^6, 3s^{1-2}$

∴ Atomic *i.e.*, number is 11 or 12.

hv = work function +*KE*; or $hv = hv_0 + KE$;

 $hv_0 = \text{ work function } = \frac{hc}{\lambda_0};$

where λ_0 is threshold wavelength.

3

The Sc atom has $3d^1$, $4s^2$ configuration.

4

Wave number of spectral line in emission spectrum of hydrogen,

$$\overline{v} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \qquad \dots (i)$$

Given, $\overline{v} = \frac{8}{9}R_H$
On putting the value of \overline{v} in Eq. (i), we get
 $\frac{8}{9} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$
 $\frac{8}{9} = \frac{1}{(1)^2} - \frac{1}{n_2^2}$
 $\frac{8}{9} - 1 = -\frac{1}{n_2^2}$
 $\frac{1}{3} = \frac{1}{n_2}$

	\therefore $n_2 = 3$							
	Hence, electron jumps from $n_2 = 3$ to $n_1 = 1$							
5	(b)							
	J.J. Thomson (1987) was first experimentally demonstrated particle nature of electron. It was first of all proposed by Millikan's oil drop experiment.							
6	(b)							
	Angular momentum for <i>n</i> and $(n + 1)$ shells are $\frac{nh}{2\pi}$ and $(n + 1)\frac{h}{2\pi}$.							
7	(b)							
	The volume of nucleus : volume of atom, $\frac{4}{3}\pi r_n^3 \div \frac{4}{3}\pi r^3$ atom.							
8	(c) O^{2-} has 10 electrons but 8 neutrons ($_8O^{16}$).							
10	(c)							
	Possible mol. wt. may be 18,20,19,20,22,21 respectively for $H^1H^1O^{16}$, $H^2H^2O^{16}$, $H^1H^2O^{16}$, H^1 H^1O^{18} , $H^2H^2O^{18}$, $H^1H^2O^{18}$.							
11	(c)							
	Magnetic moment $=\sqrt{[n(n+2)]}$ where n is number of unpaired electrons .							
12	(d)							
12	Hertz for the first time noticed the effect.							
15	(b) $Cr(24) \cdot [Ar] 3d^5 4s^1$							
	$Cr^{3+}:[Ar]3d^34s^0$							
14	(d)							
	A part of energy of pho <mark>ton (<i>hv</i>-work function) is u</mark> sed for kinetic energy of electrons.							
15	(b)							
	$\frac{e}{1.6 \times 10^{-19}}$							
	$m^{100} = 9.1 \times 10^{-28}$							
	$= 1.758 \times 10^{\circ}$							
	$\frac{e}{r}$ for proton $(p) = \frac{1.6 \times 10^{-19}}{1.672}$							
	$1.6/2 \times 10^{-1}$							
	$= 9.50 \times 10$ e 0							
	$\frac{1}{m}$ for neutron $(n) = \frac{1}{1.675 \times 10^{-24}} = 0$							
	$\frac{e}{d}$ for α – particle – $\frac{2}{d}$ = 0.5							
	m m e^{e}							
	Hence, the increasing order of $\frac{1}{m}$ is as							
1.0	$n < \alpha < p < e$							
16	(d)							
	c							
	$= Nh \overline{\lambda}$							
	where, $N = 6.02 \times 10^{23}$							
	$c = 3 \times 10^{\circ} \mathrm{ms}^{-1}$							

$$\lambda = 854 \text{ Å} = 854 \times 10^{-10} \text{m}$$

$$= \frac{6.02 \times 10^{23} \times 6.6 \times 10^{-34} \times 3 \times 10^{8}}{854 \times 10^{-10}}$$

$$= 1.4 \times 10^{6} \text{ J mol}^{-1}$$

$$= 1.4 \times 10^{3} \text{ kJ mol}^{-1}$$
17 (a)
 $e/m \text{ for proton } = \frac{1}{1}; e/m \text{ for } \alpha = \frac{2}{4}$
18 (a)
 $E = n \frac{hc}{\lambda}$
 $h = 6.6 \times 10^{-34} \text{ Js or } 1\text{J} = \frac{n \times 6.6 \times 10^{-34} \times 3 \times 10^{8}}{4000 \times 10^{-10}}$

19

(c) We know that the energy is emitted in the form of quanta and is given by,

$$\Delta E = hv = \frac{hc}{\lambda}$$

or $\lambda = \frac{hc}{\Delta E}$
= $\frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{3 \times 1.6 \times 10^{-12}}$
= 4.14×10^{-5} cm
= 4140 Å

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	D	A	А	A	В	В	В	С	D	С		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	С	D	В	D	В	D	A	A	C	В		

