CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY DPP No. : 1

Topic :- STRUCTURE OF ATOM

1

2

4

7
(c)

Isoelectronic species have same number of electron. Mg^{2+} and Na^{+}both have 10 electrons hence, they are isoelectronic species.
(c)

This is obtained by the solution of Schrodinger wave equation
Probability $=\Psi^{2} d V$
Ist orbital is spherically symmetrical
$\therefore V=\frac{4}{3} \pi r^{3}, \therefore \frac{d V}{d r}=4 \pi r^{2}$
\because Probability $=\Psi^{2} 4 \pi r^{2} d r$
(a)
${ }_{(\mathrm{eV})}^{\Delta E}=\frac{12375}{\lambda_{\text {in } \AA} \AA}=\frac{12375}{5890}=2.10 \mathrm{eV}$
(b)
$1 \mathrm{eV}=1.602 \times 10^{-12} \mathrm{erg}$.
6 (b)
s can have only two values $+1 / 2$ and $-1 / 2$.
(c)

The de-Broglie wavelength associated with the charged particle as
For electron, $\lambda=\frac{12.27}{\sqrt{V}} \AA$
For proton, $\lambda=\frac{0.286}{\sqrt{V}} \AA$
For α-particles, $\lambda=\frac{0.101}{\sqrt{V}} \AA$
(b)

$$
\begin{aligned}
\lambda=\frac{h}{m v} & =\frac{6.63 \times 10^{-34}}{1.67 \times 10^{-27} \times 1 \times 10^{3}} \\
& =3.97 \times 10^{-10} \mathrm{~m} \sim 0.40 \mathrm{~nm}
\end{aligned}
$$

(b)

The number of waves in an orbit=n.
(a)
$E \propto\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
or $E \propto \frac{1}{n^{2}}$
(b)
n is an integer except zero.
(c)

According to aufbau principle, electrons enter into orbitals according to their energy. The electrons first enters into orbital having lesser value of $(n+l)$. If the value of $n+l$ is same for two orbitals then the electron will first enter into orbital having lesser value of n.
$n=5, l=0 \therefore n+l=5+0=5$
For other,
$n=3, l=2 \quad \therefore n+l=3+2=5$
\because Both of the orbitals have same value for $n+l$.
\therefore Electron will enter into orbital having lower value of n.
\therefore Electron will enter into $n=3, l=2$ orbital.
(b)
$E=\frac{h c}{\lambda}, h$ and c for both causes are same so,
$\frac{E_{1}}{E_{2}}=\frac{\lambda_{2}}{\lambda_{1}}=\frac{16000}{8000}$
$E_{1}=2 E_{2}$
(c)

When $n=3$, number of values of l are 0 to $(n-1) i . e ., 0,1,2$
Hence,
when $n=3$, then $l=3$ does not exist.
(c)

We know that,
$\Delta E=h c \cdot R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$
For lowest energy, of the spectral line in Lyman series, $n_{1}=1, n_{2}=2$
Hence,
$\Delta E=h c . R\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]$
$\Delta E=\frac{3 h c R}{4}$
(c)

Cathode rays are fastly moving electrons.
(c)

1. $n=4, l=0, m=0, s=+\frac{1}{2}$
$\rightarrow 4 s$ energy level.
2. $n=3, l=1, m=-1, s=+\frac{1}{2}$
$\rightarrow 3 p$ energy level.
3. $n=3, l=2, m=-2, s=+\frac{1}{2}$
$\rightarrow 3 d$ energy level.
4. $n=3, l=0, m=0, s=+\frac{1}{2}$
$\rightarrow 3 s$ energy level.
According to aufbau principle, the energy of orbitals (other than H -atom) depend upon $n+1$ value.
$n+l$ for $3 d=3+2=5$
So, it is highest energy level (in the given options).
(d)

Each one possesses mass.
(c)

X-rays have larger wavelength than γ-rays.
(c)
$\Delta E=\frac{h c}{\lambda}$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	C	D	B	C	C	B	B	C	B	C	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	D	B	B	D	A	C	B	B	C	A	

