CLASS : XIth DATE :

DPP DAILY PRACTICE PROBLEMS

Solutions

SUBJECT : CHEMISTRY DPP No. : 1

Topic :- STRUCTURE OF ATOM

1 (c)

Isoelectronic species have same number of electron. Mg²⁺ and Na⁺both have 10 electrons hence, they are isoelectronic species.

2 (c) This is obtained by the solution of Schrodinger wave equation Probability = $\Psi^2 dV$ Ist orbital is spherically symmetrical $\therefore V = \frac{4}{3}\pi r^3, \\ \therefore \frac{dV}{dr} = 4\pi r^2$ \therefore Probability = $\Psi^2 4\pi r^2 dr$ 4 (a) $\frac{\Delta E}{(\text{eV})} = \frac{12375}{\lambda_{\text{in}\,\text{\AA}}} = \frac{12375}{5890} = 2.10 \text{ eV}$ 5 (b) $1 \text{ eV} = 1.602 \times 10^{-12} \text{erg.}$ 6 **(b)** *s* can have only two values +1/2 and -1/2. 7 (c) The de-Broglie wavelength associated with the charged particle as For electron, $\lambda = \frac{12.27}{\sqrt{V}}$ Å For proton, $\lambda = \frac{0.286}{\sqrt{V}}$ Å For α -particles, $\lambda = \frac{0.101}{\sqrt{V}}$ Å 8 **(b)** $\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{1.67 \times 10^{-27} \times 1 \times 10^3}$ $= 3.97 \times 10^{-10} \text{m} \sim 0.40 \text{ nm}.$ 9 (b) The number of waves in an orbit=*n*.

10

(a)

$$E \propto \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

or $E \propto \frac{1}{n^2}$

11 **(b)**

n is an integer except zero.

12

(c)

(b)

(c)

According to aufbau principle, electrons enter into orbitals according to their energy. The electrons first enters into orbital having lesser value of (n + l). If the value of n + l is same for two orbitals then the electron will first enter into orbital having lesser value of n. $n = 5, l = 0 \therefore n + l = 5 + 0 = 5$

For other,

n = 3, l = 2 $\therefore n + l = 3 + 2 = 5$

: Both of the orbitals have same value for n + l.

: Electron will enter into orbital having lower value of n.

: Electron will enter into n = 3, l = 2 orbital.

 $E = \frac{hc}{\lambda}$, h and c for both causes are same so,

$$\frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1} = \frac{16000}{8000}$$
$$E_1 = 2E_2$$

When n = 3, number of values of l are 0 to (n - 1)i.e., 0, 1, 2Hence,

when n = 3, then l = 3 does not exist.

15 **(c)**

We know that,
$$\Delta E = hc.R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

For lowest energy, of the spectral line in Lyman series, $n_1 = 1$, $n_2 = 2$ Hence,

$$\Delta E = hc.R \left[\frac{1}{1^2} - \frac{1}{2^2} \right]$$
$$\Delta E = \frac{3hcR}{4}$$

16

(c)

Cathode rays are fastly moving electrons.

1.
$$n = 4, l = 0, m = 0, s = +\frac{1}{2}$$

 \rightarrow 4*s* energy level.

2.
$$n = 3, l = 1, m = -1, s = +\frac{1}{2}$$

 \rightarrow 3*p* energy level.

3.
$$n = 3, l = 2, m = -2, s = +\frac{1}{2}$$

 \rightarrow 3*d* energy level.

4.
$$n = 3, l = 0, m = 0, s = +\frac{1}{2}$$

 $\rightarrow 3s$ energy level.

According to aufbau principle, the energy of orbitals (other than H-atom) depend upon n + 1 value.

n + l for 3d = 3 + 2 = 5

So, it is highest energy <mark>level (in the give</mark>n options).

18	(d)							
	Each one possesses ma	SS.						
19	(c)							
	X-rays have larger wav	s have larger wav <mark>eleng</mark> th than γ -rays.						
20	(c)							
	$\Delta E = \frac{hc}{\lambda}$							

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	C	D	В	С	С	В	В	С	В	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	В	В	D	A	C	В	В	С	A

