

CLASS : XIth DATE : SUBJECT : CHEMISTRY DPP No. : 9

Topic :-SOLUTION

- 1. At temperature 327°C and concentration *C* osmotic pressure of a solution is *p*, the same solutions at concentration *C*/2 and a temperature 427°C shows osmotic pressure 2 atm, value of *p* will be
 - a) $\frac{12}{7}$ b) $\frac{24}{7}$ c) $\frac{6}{5}$ d) $\frac{5}{6}$
- 2. Molarity of a solution prepared by dissolving 75.5 g of pure KOH in 540 mL solution is
a) 1.50 Mb) 2.50 Mc) 3.50 Md) 5.01 M
- 3. The relationship between the values of osmotic pressure of 0.1 M solution of $KNO_3(p_1)$ and $C H_3COOH(p_2)$ is
 - a) $\frac{p_1}{p_1 + p_2} = \frac{p_2}{p_1 + p_2}$ b) $p_1 > p_2$ c) $p_2 > p_1$ d) $p_1 = p_2$
- 4. At 40 C the vapour pressures of pure liquids, benzene and toluene, are 75 torr and 22 torr respectively. At the same temperature, the partial vapour pressure of benzene in a mixture of 78 g benzene and 46 g toluene in torr assuming the ideal solution should be :

 a) 50
 b) 25
 c) 375
 d) 53.5
- 5. The reverse of fusion is freezing and it is :
 - a) Endothermic
 - b) Exothermic
 - c) Neither exothermic nor endothermic
 - d) May be exothermic or endothermic
- 6. 50 g of an acid is dissolved in one litre aqueous solution. Distribution coefficient in favour of ether is 3. Acid left in aqueous layer when solution is shaken with one litre ether :
 a) 25 g
 b) 12.5 g
 c) 6.25 g
 d) None of these

7.	 When the vapour pressure of solutions of two liquids are less than those expected from ideal solutions, they are said to show : a) Positive deviations from ideal behaviour b) Negative deviations from ideal behaviour c) Positive deviations for lower concentrations and negative deviations for higher concentration d) None of the above 			
8.	Which method cannot be used to find out the molecular weight of non-volatile solute? a) Victor Meyer's method b) Osmotic pressure method c) Cryoscopic method d) Ebullioscopic method			
9.	The equilibrium in a he a) Distribution law	eterogeneous system car b) Phase rule	n be studied by : c) Both (a) and (b)	d)None of these
10.). At Abu mountains water boils at 96 C. What amount of NaCl be added in 1 kg water so t boils at 100 C. K_b for H ₂ O = 0.52 K molality ⁻¹			
	a) 225 g	b) 450 g	c) 200 g	d)125 g
11.	The normality of 0.3 M phosphorous acid (H_3PO_3) is			
	a) 0.2	b) 0.4	c) 0.6	d)0.8
12.	If the various terms in the below given expressions have usual meanings, the van't Hoff factor (i) cannot be calculated by which one of the expressions? a) $\pi V = \sqrt{inRT}$ b) $\Delta T_f = ik_f.m$ c) $\Delta T_b = ik_b.m$ d) $\frac{p^\circ_{\text{solvent}} - p_{\text{solution}}}{p^\circ_{\text{solvent}}} = i(\frac{n}{N+n})$			
13.	Which of the following a) Water-hydrochloric c) Water-nitric acid	liquid pairs shows a pos acid	itive deviation from Raoult's law? b) Benzene-methanol d) Acetone-chloroform	
14.	How much <i>K</i> ₂ <i>Cr</i> ₂ <i>O</i> ₇ (Ma) 9.8063 g	1ol. wt. = 294.19) is requ b) 7.3548 g	uired to prepare one litr c) 3.6774 g	e of 0.1 N solution? d) 4.903 g
15.	The boiling point of C_6H_6 , CH_3OH , $C_6H_5NH_2$ and $C_6H_5NO_2$ are 80 °C, 65 °C, 184 °C and 212 °C respectively. Which will show highest vapour pressure at room temperature? a) C_6H_6 b) CH_3OH c) $C_6H_5NH_2$ d) $C_6H_5NO_2$			

- 16. In a pair of immiscible liquids, a common solute dissolves in both and the equilibrium is reached. The concentration of solute in upper layer is :
 - a) Same as in lower layer
 - b) Lower than the lower layer
 - c) Higher than the lower layer
 - d) In fixed ratio with that in the lower layer

17. Insulin $(C_2H_{10}O_5)_n$ is dissolved in a suitable solvent and the osmotic pressure (π) of solutions of various concentrations *C* (g/cm³) is measured at 20 C. the slope of a plot of π against *C* is formed to be 4.65 × 10⁻³. The molecular weight of the insulin is : a) 4.8 × 10⁵ b) 9 × 10⁵ c) 3 × 10⁵ d) 5.17 × 10⁶

- 18. Volume of 0.6 M NaOH required to neutralise $30 cm^3$ of 0.4 M HCl is
a) $20 cm^3$ b) $40 cm^3$ c) $45 cm^3$ d) $30 cm^3$
- 19. The freezing point of the 0.05 molal solution of non-electrolyte in water isa) -0.093° Cb) 1.86° Cc) 0.93° Cd) 0.093° C
- 20. A molar solution of NaCl has a density of 1.21 g mL⁻¹. The molarity of this solution is
a) 2.35 b) 1.143 c) 2.95 d) 1.356