CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY
DPP No. : 9

Topic :-SOLUTIONS

1
(b)

$$
\begin{aligned}
\pi V & =n R T \\
\pi & =\frac{n}{V} R T \\
\pi & =C R T \\
\frac{\pi_{1}}{\pi_{2}} & =\frac{C_{1} R T_{1}}{C_{2} R T_{2}} \\
\pi_{1} & =p, \pi_{2}=2 a t m C_{1}=C, C_{2}=\frac{C}{2} \\
T_{1} & =600 \mathrm{~K}, \quad T_{2}=700 \mathrm{~K} \\
\frac{P}{2} & =\frac{2 \times C \times R \times 600}{C \times R \times 700} \\
\mathrm{p} & =\frac{24}{7}
\end{aligned}
$$

(b)
$M=\frac{w \times 1000}{m \times V(\mathrm{~mL})}=\frac{75.5 \times 1000}{56 \times 540}=2.50 \mathrm{M}$
(b)
KNO_{3} is a strong binary electrolyte. Its van't Hoff factor is $2 . \mathrm{CH}_{3} \mathrm{COOH}$ is a very eak electrolyte. Its van't Hoff factor is less than that for KNO_{3}. Hence osmotic pressure of
0.1 M KNO 3 (Colligative molarity $=0.1 \mathrm{M} \times 2$)

$$
>0 . \mathrm{P} . \text { of } 0.1 \mathrm{M} \mathrm{CH} 33 \mathrm{COOH}
$$

(Colligative molarity is 0.1 M)
(a)

$$
\begin{aligned}
P_{M} & =P_{\text {Benzene }}^{\prime}+P_{\prime}^{\prime} \text { Toluene } \\
P_{M} & =75 \times \frac{\frac{78}{78}}{\frac{78}{78}+\frac{46}{92}}+22 \times \frac{\frac{46}{82}}{\frac{78}{78}+\frac{46}{92}} \\
P_{M} & =75 \times \frac{2}{3}+22 \times \frac{1}{2} \times \frac{2}{3} \\
& =50+7.3=57.3
\end{aligned}
$$

Also $P_{A}^{\prime}=50$
(b)

Fusion requires heat (i.e, endothermic), thus freezing is exothermic.
(b)
$K=\frac{a / 1}{\frac{50-a}{1}}=3$;
$\therefore a($ or acid in ether $)=37.5$; acid in water $=12.5 \mathrm{~g}$
(b)

Liquid mixtures showing positive deviations possess higher value of experimental vapour pressure than those obtained from Raoult's law.
(a)

Victor Meyer's method is used for volatile solutes. Rest all are used for non-volatile solute.
(c)

Both phase rule and distribution law are applied to heterogeneous systems.
(a)

$$
\begin{aligned}
\Delta T_{b} & =\frac{1000 \times K_{b} \times w}{m \times W}(1+\boldsymbol{\alpha}) \\
\therefore \quad w & =\frac{\Delta T_{b} \times m \times W}{1000 \times K_{b}(1+\alpha)}=\frac{4 \times 58.5 \times 1000}{1000 \times 0.52 \times 2} \\
& =225 \mathrm{~g}
\end{aligned}
$$

(a)

1. Van't Hoff equation is

$$
\pi V=i n R T
$$

2. For depression in freezing point,

$$
\Delta T_{f}=i \times k_{f} \times m
$$

3. For elevation in boiling point,

$$
\Delta T_{b}=i \times k_{b} \times m
$$

4. For lowering of vapour pressure,

$$
\frac{p_{\text {solvent }}^{\circ}-p_{\text {solution }}}{p_{\text {solvent }}^{\circ}}=i\left(\frac{n}{N+n}\right)
$$

(b)

Water and hydrochloric acid; and water and nitric acid form miscible solutions. They show negative deviation.
In case of $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and CHCl_{3}, there is interaction between them, thus force of attraction between $\mathrm{CH}_{3} \mathrm{COCH}_{3} . . \mathrm{CHCl}_{3}$ is larger than between $\mathrm{CHCl}_{3} \ldots . \mathrm{CHCl}_{3}$ or $\mathrm{CH}_{3} \mathrm{COC}$ $l_{3} \ldots \mathrm{CH}_{3} \mathrm{COCH}_{3}$ and thus vapour pressure is less than expected. -a negative deviation. In case of $\mathrm{CH}_{3} \mathrm{OH}$ there is association by intermolecular h-bonding. When benzene is added to $\mathrm{CH}_{3} \mathrm{OH}$, H-bonding breaks and thus force of attraction between $\mathrm{CH}_{3} \mathrm{OH}$ and benzene molecules is smaller than between $\mathrm{CH}_{3} \mathrm{OH}$ or benzene molecules (in pure state).

Vapour pressure of mixture is greater than expected-a positive deviation.

(d)

Equivalent weight of

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=\frac{\text { molecular weighty of } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{\text { oxidation number of } \mathrm{Cr}}
$$

Oxidation number of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

$$
\begin{aligned}
2[+1]+2(\mathrm{x})+7(-2) & =0 \\
2+2 \mathrm{x}-14 & =0 \\
2 \mathrm{x} & =12 \\
\mathrm{x} & =6
\end{aligned}
$$

Equivalent weight $=\frac{294.19}{6}=49.08$
$\frac{\text { weight of } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{\text { equivalent wt.(E) }}=\mathrm{N} \times \mathrm{V}(\mathrm{L})$
$w=0.1 \times 1 \times 49.03=4.903 \mathrm{~g}$
(b)

Lower is the b. p. of solvent more is its vapour pressure.
(d)

$$
K=c_{1} / c_{2}
$$

(d)

$$
\begin{aligned}
\pi V & =\frac{w}{m} S T \\
\therefore \pi & =\frac{w}{V} \cdot \frac{S T}{m} \\
\pi & =c^{\prime} \cdot \frac{\prime T}{m}\left(c^{\prime} \text { is in } \mathrm{g} / \text { litre. }\right)
\end{aligned}
$$

The plots of $\pi v s . c\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$ have slope $=\frac{S T \times 1000}{m}$

$$
\begin{aligned}
& \therefore \quad \frac{S T \times 1000}{m}=4.65 \times 10^{-3} \\
& \\
& \\
& m=\frac{0.0821 \times 293 \times 1000}{4.65 \times 10^{-3}}=5.17 \times 10^{6}
\end{aligned}
$$

(a)

According to molarity equation

$$
\begin{aligned}
\mathrm{NaOH} & =\mathrm{HCl} \\
M_{1} V_{1} & =M_{2} V_{2} \\
0.6 \times V_{1} & =0.4 \times 30 \\
V_{1} & =\frac{0.4 \times 30}{0.6}=20 \mathrm{~cm}^{3}
\end{aligned}
$$

(a)

For non-electrolyte
$\begin{aligned} & \Delta T_{f} & =k_{f} \times m \\ \text { Given, } & \mathrm{m} & =0.05, \\ \therefore & \Delta T_{f} & =1.86 \times 0.05=0.093^{\circ} \mathrm{C}\end{aligned}$
Freezing point of solution

$$
\begin{aligned}
k_{f}=1.86 & =0-\Delta T_{f} \\
& =0-0.093=-0.093^{\circ} \mathrm{C}
\end{aligned}
$$

(b)

M $=\frac{m \times d}{1+\frac{m M_{2}}{1000}}=\frac{1 \times 1.21}{1+\frac{1 \times 58.5}{1000}}$
$=\frac{1.21 \times 1000}{1000+58.5}$
$=1.143 \mathrm{M}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	B	B	B	A	B	B	B	A	C	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	A	B	D	B	D	D	A	A	B		

