CLASS : XIth **DATE:**

(c)

Solutions

SUBJECT : CHEMISTRY DPP No. : 7

Topic :- SOLUTIONS

1

2

3

The extraction is more efficient when little volume of extracting liquid is used for large number of operations. **(b)** Normality of acid = Molarity \times basicity $= 2 \times 2 = 4$ N (a) CuCl₂is an electrolyte which ionise in solution as follows. $CuCl_2 \rightleftharpoons Cu^{2+} +$ $2Cl^{-}$ At t=01 mole 0 0 After ionisation $(1 - \alpha)$ *mole* α *mole* $2\alpha mole$ Thus, number of particles after ionisation $=1-\alpha+\alpha+2\alpha=1+2\alpha$ \therefore van,t Hoff factor (*i*) $= \frac{\text{number of particloes after ionisation}}{\text{number of particles before ionisation}}$ $(i) = \frac{1+2\alpha}{1} (\text{On 100 \% ionisation } \alpha = 1)$ or $=\frac{1+2\times 1}{1}=3$ The elevation in boiling point (when colligative property is abnormal) $\Delta T^b = i \times k_b \times m$ $m \rightarrow$ molality of solution Molality of $CuCl_2$ solution weight of CuCl₂in gram 13.44 $\frac{1}{\text{weight of water (solvent)in kg}} = \frac{1}{1} = 0.1 \text{ m}$

Thus, $\Delta T_{h} = 3 \times 0.52 \times 0.1 = 0.156 \approx 0.16^{\circ}$ C

(a)

4

$$i=n(A_xB_y)+n(A^{y+})+n(B^{x-})$$

=2-\alpha+x\alpha+y\alpha=1+\alpha(x+y-1)
$$\therefore \quad \alpha = \frac{i-1}{(x+y-1)}$$

5

(a)

(d)

According to Raoult's law

$$\frac{p-p_s}{p} = x_{\text{solute}}$$

Where, p = vapour pressure of pure solvent = 0.80 atm

 p_s = vapour pressure of solute =0.60 atm

$$X_{\text{solute}} = \text{ mole fraction of solute}$$

$$\frac{\frac{0.80 - 0.60}{0.80} = X_{\text{solute}}}{\frac{0.20}{080} = X_{\text{solute}}}$$
or
$$\frac{\frac{0.20}{080} = X_{\text{solute}}}{x_{solute} = 0.25}$$

6

These are characteristics which reflect for high solubility of gases in water. It is therefore S O_2 and NH_3 having lower critical temperature or easily liquefied, HCl which ionises in water and CO_2 which reacts with water are more soluble.

7 (d)

In osmosis only solvent particles move.

8

(d)
Given,
$$T_b - T_f = 105.0^{\circ}C$$

 $\Rightarrow (100 = \Delta T_b) - (0 - \Delta T_f) = 105.0^{\circ}C$
 $\Delta T_b + \Delta T_f = 5$
 $\Delta T_b + \Delta T_f(k_b + k_f) \times m$ (m =molality)
 $\Rightarrow 5 = (1.86 \times 0.51) \times \frac{w \times 1000}{342 \times 100}$
 $\therefore w = \frac{1710}{23.7} = 72 g$

(a)

Due to higher pressure inside the boiling point elevated

10

10 (a)

$$M = \frac{w \times 1000}{\text{mol. mass} \times \text{volume in mL}}$$

$$= \frac{9.8 \times 1000}{98 \times 2000} = 0.05 \text{ M}$$
11 (c)

$$K = \frac{4.412}{0.0156} = \frac{s}{0.34}$$

$$\therefore S = \frac{4.412 \times 0.34}{0.0156}$$
12 (b)

$$nH = -\log[H^+]$$

$$pH = -log[H^+]$$

 $log[H^+] = -pH = 0.00$
 $[H^+]=antilog(0.00)$

 $[H^+] = 1.0 \text{ M}$ $M H_2 SO_4 = 2NH_2 SO_4$ \therefore Normality of 250mL solution $=\frac{2 \times 250}{1000}$ = 0.50 N

13 (c)

Benzoic acid in benzene exists as a dimer. So, number of molecules decreases and hence, osmotic pressure decreases.

$$K = 420 = \frac{5 - x}{x}$$
$$\therefore x = 0.0119 \text{ g}$$

15

(a)

(d)

(c)

(b)

If mol. wt. is high, ΔT_f , ΔT_b and ΔP will be too small to read out accurately.

16

Van't Hoff factor (*i*) is given by

 $i = \frac{\text{observed value of colligative property}}{\text{normal value of colligative property}}$

The normal value of colligative property is the theoretically calculated value assuming no association or dissociation.

$$\therefore$$
 $i = \frac{\pi_{obs}}{\pi_{cal}}$

17

 $P_m = P_A^0 X_A + P_B^0 X_B$ $P_m = 1000 \times \frac{2}{5} + 80 \times \frac{3}{5}$ = 40 + 48 = 88 torr

18

Alcohol involves H-bonding; also mol. wt. of $CH_4 > mol.wt.$ of H_2 . Greater is molecular weight of covalent compound, higher is its b.p.

19 **(b)**

Lesser is ΔT_f , more is freezing point.

20 (a)

Liquid mixtures showing positive deviations from Raoult's law posses lower b. p.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	В	A	A	А	D	D	D	A	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	В	C	В	А	D	C	В	В	A

