CLASS : XIth DATE :

(a)

Solutions

SUBJECT : CHEMISTRY DPP No. : 6

Topic :- SOLUTIONS

1

According to the Boyle-van't Hoff law, at constant temperature the osmotic pressure of a solution is directly proportional to its concentration and inversely proportional to its dilution. $\pi \propto C$ (where, C= concentration).

Hence, the osmotic pressure of a solution at a given temperature increases with concentration.

(c) $P_M = P_{C_5H_{12}}^0 \cdot X_{C_5H_{12}}^0 + P_{C_6H_{14}}^0 \cdot X_{C_6H_{14}};$ Thus, $P_M = 440 \times \frac{1}{5} + 120 \times \frac{4}{5} = 184$ Now, $P_{C_5H_{12}} = P_{C_5H_{12}}^0 \cdot X_{C_5H_{12}(l)} = PM \cdot X_{C_5H_{12}(g)}$ $\therefore 440 \times \frac{1}{5} = 184 \times X_{C_5H_{12}(g)}$ $\therefore X_{C_5H_{12}(g)} = 0.478$ (d)

 H_2O and ethanol are miscible.

4 **(b)**

3

According to the Raoult's law the relative lowering vapour pressure which is produced by dissolving a non-volatile solute in a solvent is equal to mole fraction of the solute.

$$\frac{P-P_s}{P} = X_B$$

where, p= vapour pressure of solvent

 P_s = vapour pressure of solution

 X_B = mole fraction of B

Given, P=0.80 atm

:.

 $P_{s} = 0.60 \text{ atm}$

$$X_B = \frac{0.80 - 0.60}{0.80} = \frac{0.20}{0.80} = 0.25$$

$$X_B = \frac{1}{0.80} = \frac{1}{0.80} = 0.$$

(b) For NaCl,i = 2 $\Delta T_f = 2k_f \times m = 2 \times 1.86 \times 1 = 3.72$ $T_s = T - \Delta T_f = 0 - 3.72 = -3.72$ °C

6

(a) $P_{T} = X_{H}.P_{H}^{\circ} + P_{0}^{\circ}$ $X_{H} = \frac{\frac{25}{100}}{\frac{25}{100} + \frac{35}{114}} = 0.45 \text{ and } \therefore X_{o} = 0.55$ $P_{T} = 0.45 \times 105 + 0.55 \times 45 = 72kPa$ (a) $BaCl_{2} \rightleftharpoons Ba^{2+} + 2Cl^{-}$ Initial 0.01 M At equilibrium (0.01-x) M xM 2xM $i = \frac{(0.01 - x) + x + 2x}{0.01}$ $= \frac{0.01 + 2x}{0.01} = 1.98$ x = 0.0049 $\Re \alpha = \frac{x}{0.01} \times 100 = \frac{0.0049 \times 100}{0.01} = 49\%$

9

(a)

7

8

According to Raoult's law relative lowering of vapour pressure \propto mole fraction of solute Thus, mole fraction of solute = 0.0125

Mole fraction of a solute is related to the molality by the following expression.

Mole fraction of a solute is related to the molanty by the fold

$$\left(\frac{1}{x} - 1\right) = \frac{1000}{m_B \times m}$$
where, X = mole fraction of solute
 m_B = moleular weight of solvent
 $m = \text{molality}$
 $\left(\frac{1}{0.0125} - 1\right) = \frac{1000}{18 \times m}$
 $m = \frac{12.5}{(1 - 0.0125) \times 18}$
 $= \frac{12.5}{17.775}$
 $= 0.70$
(b)
 $\frac{p^0 - p_s}{p^0} = \frac{w}{m} \times \frac{M}{W} = \frac{18}{180} \times \frac{18}{90} = 0.02$
(d)

11

10

Osmotic pressure (π) =CRT Unit of osmotic pressure is atm.

Unit of molality mole per kilogram (mol kg^{-1}).

13 **(b)**

Azeotropic mixture which boils at a lower temperature than either of two components is formed by non-ideal solution showing positive deviation

 $\Delta T_f = ik_f m$ where ΔT_f = depression in freezing point

PRERNA EDUCATION

i=van,t Hoff factor *m*= molality and and k_f = freezing point depression constant For 0.01 molal NaCl solution $0.37 = 2 \times k_f \times 0.01$ $k_f = \frac{0.37}{2 \times 0.01}$ -----(i) :. For 0.02 molal urea solution $\Delta T_f = 1 \times k_f \times 0.02$ $k_f = \frac{\Delta T_f}{0.02}$:. -----(ii) From Eqs (i) and (ii) $\frac{\frac{0.37}{2 \times 0.01}}{\Delta T_f} = \frac{\Delta T_f}{0.02}$ $\Delta T_f = \frac{\frac{0.37 \times 0.02}{2 \times 0.02}}{2 \times 0.02}$ $\Delta T_f = 0.37^{\circ}C$:. **(b)** h = 2.6 mmGiven, $\pi = hdg = \frac{2.6}{10} \times 1 \times 980 \text{ dyne cm}^{-2}$ **.**. $\pi = \frac{w}{V.m}ST$ Also $\frac{26 \times 1 \times 980}{10} = \frac{0.75 \times 8.314 \times 10^7 \times 277}{125 \times m}$ $\therefore \qquad m = 5.4 \times 10^5$ (a) Relationship between normality and molar concentration is Normality = $n \times \text{molarity}(M)$ Where, n = the number of moles of H^+ per mole of the compound that solute is capable of releasing [acid] on reacting with base. In case of HCl, n = 1Hence, 2 N HCl solution $\approx 2 \text{ M } H_2 SO_4$ solution. In case of H_2SO_4 n=2Hence, 4.0 NH₂SO₄ solution ≈ 2 MH₂SO₄ solution. (a) Orthophosphoric acid (H_3PO_4) is a tribasic acid. \therefore Normality = molarity \times basicity \therefore Normality = 3 M \times 3 = 9 N (c) Kinetic energy in liquid and vapour phase $=\frac{3}{2}RT$.

20

18

16

17

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	А	C	D	В	А	В	А	А	A	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	В	В	A	A	В	A	A	C	C

