CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY DPP No. : 6

Topic :- SOLUTIONS

(a)

According to the Boyle-van't Hoff law, at constant temperature the osmotic pressure of a solution is directly proportional to its concentration and inversely proportional to its dilution. $\pi \propto C$ (where, $\mathrm{C}=$ concentration).
Hence, the osmotic pressure of a solution at a given temperature increases with concentration.
2 (c)
$P_{M}=P_{C_{5} H_{12}}^{0} \cdot X_{C_{5} H_{12}}^{0}+P_{C_{6} H_{14} \cdot}^{0} X_{C_{6} H_{14}}$;
Thus, $\quad P_{M}=440 \times \frac{1}{5}+120 \times \frac{4}{5}=184$
Now, $P_{\mathrm{C}_{5} \mathrm{H}_{12}}=P_{\mathrm{C}_{5} \mathrm{H}_{12}}^{0} \cdot X_{\mathrm{C}_{5} \mathrm{H}_{12}(l)}=P M \cdot X_{\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{~g})}$
$\therefore \quad 440 \times \frac{1}{5}=184 \times X_{\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{~g})}$
$\therefore \quad X_{\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{~g})}=0.478$
(d)
$\mathrm{H}_{2} \mathrm{O}$ and ethanol are miscible.
(b)

According to the Raoult's law the relative lowering vapour pressure which is produced by dissolving a non-volatile solute in a solvent is equal to mole fraction of the solute.

$$
\frac{P-P_{s}}{P}=X_{B}
$$

where, $\mathrm{p}=$ vapour pressure of solvent
$P_{S}=$ vapour pressure of solution
$X_{B}=$ mole fraction of B
Given, $\mathrm{P}=0.80 \mathrm{~atm}$

$$
P_{s}=0.60 \mathrm{~atm}
$$

$$
\therefore \quad X_{B}=\frac{0.80-0.60}{0.80}=\frac{0.20}{0.80}=0.25
$$

(b)

For $\mathrm{NaCl}, i=2$
$\Delta T_{f}=2 k_{f} \times m=2 \times 1.86 \times 1=3.72$
$T_{s}=T-\Delta T_{f}=0-3.72=-3.72^{\circ} \mathrm{C}$
(a)
$P_{T}=X_{H} \cdot P_{H}^{\circ}+P_{O}^{\circ}$
$X_{H}=\frac{\frac{25}{100}}{\frac{25}{100}+\frac{35}{114}}=0.45$ and $\therefore \quad X_{o}=0.55$
$P_{T}=0.45 \times 105+0.55 \times 45=72 k P a$
(a)

Initial $\quad 0.01 \mathrm{M}$
At equilibrium (0.01-x) M xM $2 x M$

$$
\begin{aligned}
i & =\frac{(0.01-x)+x+2 x}{0.01} \\
& =\frac{0.01+2 x}{0.01}=1.98 \\
x & =0.0049 \\
\% \alpha & =\frac{x}{0.01} \times 100=\frac{0.0049 \times 100}{0.01}=49 \%
\end{aligned}
$$

(a)

According to Raoult's law relative lowering of vapour pressure \propto mole fraction of solute Thus, mole fraction of solute $=0.0125$
Mole fraction of a solute is related to the molality by the following expression.

$$
\left(\frac{1}{X}-1\right)=\frac{1000}{m_{B} \times m}
$$

where, $\mathrm{X}=$ mole fraction of solute

$$
\begin{aligned}
& m_{B}=\text { moleular weight of solvent } \\
& m=\text { molality } \\
& \qquad \begin{aligned}
\left(\frac{1}{0.0125}-1\right) & =\frac{1000}{18 \times m} \\
m & =\frac{12.5}{(1-0.0125) \times 18} \\
& =\frac{12.5}{17.775} \\
& =0.70
\end{aligned}
\end{aligned}
$$

(b)
$\frac{p^{0}-p_{s}}{p^{0}}=\frac{w}{m} \times \frac{M}{W}=\frac{18}{180} \times \frac{18}{90}=0.02$
(d)

Osmotic pressure (π) $=$ CRT
Unit of osmotic pressure is atm.
Unit of molality mole per kilogram $\left(\mathrm{mol} \mathrm{kg}^{-1}\right)$.
(b)

Azeotropic mixture which boils at a lower temperature than either of two components is formed by non-ideal solution showing positive deviation
(a)

$$
\Delta T_{f}=i k_{f} m
$$

where $\Delta T_{f}=$ depression in freezing point

$\mathrm{i}=$ van,t Hoff factor

$m=$ molality and
and $\quad k_{f}=$ freezing point depression constant
For 0.01 molal NaCl solution

$$
\begin{array}{rlrl}
& & 0.37 & =2 \times k_{f} \times 0.01 \\
& & k_{f}=\frac{0.37}{2 \times 0.01} \tag{i}
\end{array}
$$

For 0.02 molal urea solution

$$
\begin{array}{rlrl}
\Delta T_{f} & =1 \times k_{f} \times 0.02 \\
& \therefore \quad k_{f} & =\frac{\Delta T_{f}}{0.02} \tag{ii}
\end{array}
$$

From Eqs (i) and (ii)

$$
\begin{aligned}
& \frac{0.37}{2 \times 0.01}=\frac{\Delta T_{f}}{0.02} \\
& \Delta T_{f}=\frac{0.37 \times 0.02}{2 \times 0.01} \\
\therefore \quad \Delta T_{f} & =0.37^{\circ} \mathrm{C}
\end{aligned}
$$

Given, $\quad h=2.6 \mathrm{~mm}$
$\therefore \quad \pi=h d \mathrm{~g}=\frac{2.6}{10} \times 1 \times 980$ dyne cm $^{-2}$
Also $\quad \pi=\frac{w}{V . m} S T$
$\frac{26 \times 1 \times 980}{10}=\frac{0.75 \times 8.314 \times 10^{7} \times 277}{125 \times m}$
$\therefore \quad m=5.4 \times 10^{5}$

(a)

Relationship between normality and molar concentration is
Normality $=n \times$ molarity (M)
Where, $n=$ the number of moles of H^{+}per mole of the compound that solute is capable of releasing [acid] on reacting with base.
In case of HCl ,

$$
n=1
$$

Hence, 2 N HCl solution $\approx 2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution.
In case of $\mathrm{H}_{2} \mathrm{SO}_{4}$

$$
n=2
$$

Hence, $4.0 \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution $\approx 2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution.

Orthophosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ is a tribasic acid.
\because Normality $=$ molarity \times basicity
\therefore Normality $=3 \mathrm{M} \times 3=9 \mathrm{~N}$
(c)

Kinetic energy in liquid and vapour phase $=\frac{3}{2} R T$.

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	C	D	B	A	B	A	A	A	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	D	B	B	A	A	B	A	A	C	C			

