CLASS : XIth DATE :

(b)

DAILY PRACTICE PROBLEMS

Solutions S

SUBJECT : CHEMISTRY DPP No. : 4

Topic :- SOLUTIONS

1 **(b)**

Substances of high vapour pressure (*e.g.*, gasoline) evaporates more quickly than substances of low vapour pressure (*e.g.*, motor oil).

2

Lowering of vapour pressure is a colligative property, *i.e.*, depends only upon the number of particles of solute and not on the nature of solute. \because 0.1 M Glucose \rightarrow remains undissociated

0.1 m $BaCl_4 \rightarrow Ba^{2+} + Cl^- \Rightarrow 3 \text{ ions}$ 0.1 m $MgSO_4 \rightarrow Mg^{2+} + SO_4^{2-} \Rightarrow 2 \text{ ions}$ 0.1 M NaCl $\rightarrow Na^+ + Cl^- \Rightarrow 2 \text{ ions}$

 \therefore 0.1 m *BaCl*₂gives maximum number of particles, hence it exhibits maximum lowering of vapour pressure.

3 **(d)**

Amount of gas dissolved per unit volume \propto pressure of gas; this is Henry's law.

4

(b)

(a)

Osmotic pressure (π) =CRT

Here, C =concentration of solution

 $C = \frac{n}{V}$ $n = \frac{w}{m} = \frac{\text{weight in gram of substance}}{\text{mol.weight of substance}}$ V = 1L $C = \frac{68.4}{342}$ $\pi = \frac{68.4}{342} \times 0.082 \times 273$ = 4.48 atm

5

Molarity gets affected as it is the number of moles per unit volume (volume increases with increase of temperature).

6 **(c)**

The solution of acetone and chloroform shows negative deviation from Raoult's law because acetone and chloroform make the hydrogen bond.

So

 $\triangle H_{mix}$ and $\triangle V_{mix}$ both are negative.

(d) $P'_A = P^0_A \cdot X_A$ and $P'_A = P_M \cdot X'_A$ $P'_B = P_M \cdot X'_B$ $\therefore \frac{P'_A}{P'_B} = \frac{X'_A}{X'_B} = \frac{(n_A)_V}{(n_B)_V}$ (d)

8

7

$$\frac{P_0 - P_s}{P_s} = \frac{w \times M}{m \times W}$$
$$\frac{10}{(750 - 10)} = \frac{2 \times 78}{m \times 78},$$
$$\therefore \qquad m = 148;$$

m comes 150 if formula $\frac{P_0 - P_s}{P_0}$; $\frac{w \times M}{m \times W}$ is used. But this is only for dilute solutions.

(d) —do—

10

11

12

(c) For same solution $\frac{\Delta T_f}{\Delta T_b} = \frac{K'_f}{K'_b}$ or $\Delta T_f = \Delta T_b \times \frac{K'_f}{K'_b}$ or $\Delta T_f = \frac{0.15 \times 1.86}{0.512} = 0.545$ Now on diluting the solution to double $\Delta T_f \propto \frac{1}{\text{wt. of solvent}}$ $\Delta T_f = \frac{0.545}{2} = 0.272$:. f.p. = -0.272 C ... (c) $\pi V = nST$ or $\pi = cST$ $\therefore c = \frac{0.821}{0.0821 \times 300} = 0.033 \, M$ (d) : 20 g glucose is dissolved in 100 mL solution \therefore 1 g glucose is dissolved in $=\frac{100}{20}$ 180 g (g-mole) glucose is dissolved in $=\frac{100 \times 180}{20}=900 \text{ mL}$ = 0.9L

13 **(d)**

 $\Delta T_f = \frac{1000 k_f w}{mW}$ $\Delta T_f = 0.19^{\circ}\text{C}; k_f = 5.08 \text{ kg } mol^{-1}, \text{ w}=1\text{g}, \text{W}=80\text{g}$ $M = \frac{1000 k_f w}{\Delta T_f W}$ $= \frac{1000 \times 5.08 \times 1}{0.19 \times 80} = 334.21$ Atomic weight of As =74.92 Hence, number of atoms $= \frac{334.21}{74.92} \approx 4$ Hence, the formula of arsenic is As_4 .

14

(d)

(a)

Reverse osmosis involves movement of solvent particles through semipermeable membrane from concentrated solution to dilute solution under pressure.

15

When ethylene glycol is added to H_2O as antifreeze, it decreases the freezing point of H_2O in winter and increase the boiling point of water in the summer.

16 **(b)**

17

18

20

Elevation in boiling point is colligative property and depends upon number of ions of molecules or particles.

 $CaSO_4 \rightarrow Ca^{2+} + SO_4^{2-}$: 2 ions $BaCl_2 \rightarrow Ba^{2+} + 2Cl^ \therefore$ 3 ions NaCl $\rightarrow Na^+ + Cl^ \therefore$ 2 ions urea \rightarrow no dissociation ∴ 1 molecule *•• BaCl*₂furnishes maximum ions. \therefore *BaCl*₂ will have maximum boiling point. (d) K₂SO₄ is 17.4 ppm *i.e.* $10^6 \text{ g} \cong \text{mL}$)has $K_2SO_4 = 17.4 \text{ g} K_2SO_4$ 10^3 mL has K₂SO₄ = $\frac{17.4 \times 10^3}{10^6}$ = 0.0174 g / L $=\frac{0.0174}{174}$ mol/L $\therefore [K_2 SO_4] = 1 \times 10^{-4} M$ $K_2 SO_4 \rightleftharpoons 2K^+ + SO_4^{2-} \quad \therefore \quad [K^+] = 2 \times 10^{-4} M$ (a) $\frac{p^{\circ} - p_s}{p^{\circ}} = X_1$ (mole fraction of solute) $m = \frac{k_b \times w \times 1000}{\Delta T_b \times W} = \frac{2.16 \times 0.15 \times 1000}{0.216 \times 15} = 100$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	В	D	В	А	C	D	D	D	C
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	D	D	D	А	В	D	А	D	A

