CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY DPP No. : 4

Topic :-SOLUTIONS

(b)

Substances of high vapour pressure (e.g., gasoline) evaporates more quickly than substances of low vapour pressure (e.g., motor oil).
(b)

Lowering of vapour pressure is a colligative property, i.e., depends only upon the number of particles of solute and not on the nature of solute. $\quad \because \quad 0.1 \mathrm{M}$ Glucose \rightarrow remains undissociated

$$
\begin{aligned}
& 0.1 \mathrm{~m} \mathrm{BaCl}_{4} \rightarrow \mathrm{Ba}^{2+}+\mathrm{Cl}^{-} \Rightarrow 3 \text { ions } \\
& 0.1 \mathrm{~m} \mathrm{MgSO}_{4} \rightarrow \mathrm{Mg}^{2+}+\mathrm{SO}_{4}^{2-} \Rightarrow 2 \text { ions } \\
& 0.1 \mathrm{M} \mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-} \Rightarrow 2 \text { ions }
\end{aligned}
$$

$\therefore \quad 0.1 \mathrm{~m} \mathrm{BaCl} l_{2}$ gives maximum number of particles, hence it exhibits maximum lowering of vapour pressure.

(d)

Amount of gas dissolved per unit volume \propto pressure of gas; this is Henry's law.
(b)

Osmotic pressure (π)=CRT
Here, C = concentration of solution

$$
\begin{aligned}
\mathrm{C} & =\frac{n}{V} \\
\mathrm{n} & =\frac{w}{m}=\frac{\text { weight in gram of substance }}{\text { mol.weight ofsubstance }} \\
\mathrm{V} & =1 \mathrm{~L} \\
\mathrm{C} & =\frac{68.4}{342} \\
\pi & =\frac{68.4}{342} \times 0.082 \times 273 \\
& =4.48 \mathrm{~atm}
\end{aligned}
$$

(a)

Molarity gets affected as it is the number of moles per unit volume (volume increases with increase of temperature).
(c)

The solution of acetone and chloroform shows negative deviation from Raoult's law because acetone and chloroform make the hydrogen bond.

So
$\Delta H_{\text {mix }}$ and $\Delta V_{\text {mix }}$ both are negative.
(d)

$$
\begin{gathered}
P_{A}^{\prime}=P_{A}^{0} \cdot X_{A} \text { and } \quad P_{M} \cdot X_{A}^{\prime} \\
P_{B}^{\prime}=P_{M} \cdot X_{B}^{\prime} \\
\therefore \frac{P_{A}^{\prime}}{P_{B}^{\prime}}=\frac{X_{A}^{\prime}}{X_{B}^{\prime}}=\frac{\left(n_{A}\right)_{V}}{\left(n_{B}\right)_{V}}
\end{gathered}
$$

(d)
$\because 20 \mathrm{~g}$ glucose is dissolved in 100 mL solution
$\therefore 1 \mathrm{~g}$ glucose is dissolved in $=\frac{100}{20}$
180 g (g-mole) glucose is dissolved in

$$
\begin{aligned}
& =\frac{100 \times 180}{20}=900 \mathrm{~mL} \\
& =0.9 \mathrm{~L}
\end{aligned}
$$

8
(d)

$$
\begin{aligned}
\Delta T_{f} & =\frac{1000 k_{f} w}{m W} \\
\Delta T_{f} & =0.19^{\circ} \mathrm{C} ; k_{f}=5.08 \mathrm{~kg} \mathrm{~mol}^{-1}, \mathrm{w}=1 \mathrm{~g}, \mathrm{~W}=80 \mathrm{~g} \\
\mathrm{M} & =\frac{1000 k_{f} w}{\Delta T_{f} W} \\
& =\frac{1000 \times 5.08 \times 1}{0.19 \times 80}=334.21
\end{aligned}
$$

Atomic weight of As $=74.92$
Hence, number of atoms $=\frac{334.21}{74.92} \approx 4$
Hence, the formula of arsenic is $A s_{4}$.
(d)

Reverse osmosis involves movement of solvent particles through semipermeable membrane from concentrated solution to dilute solution under pressure.
(a)

When ethylene glycol is added to $\mathrm{H}_{2} \mathrm{O}$ as antifreeze, it decreases the freezing point of $\mathrm{H}_{2} \mathrm{O}$ in winter and increase the boiling point of water in the summer.

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	B	B	D	B	A	C	D	D	D	C		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	D	D	D	A	B	D	A	D	A		

