CLASS : XIth
SUBJECT : CHEMISTRY
DATE :

Topic :-SOLUTIONS

1. A 5.2 molal aqueous solution of methyl alcohol, $\mathrm{CH}_{3} \mathrm{OH}$, is supplied. What is the mole fraction of methyl alcohol in the solution?
a) 1.100
b) 0.190
c) 0.086
d) 0.050
2. Equal masses of methane and oxygen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by oxygen is
a) $\frac{2}{3}$
b) $\frac{1}{3} \times \frac{273}{298}$
c) $\frac{1}{3}$
d) $\frac{1}{2}$
3. Two liquids X and Y form an ideal solution. The mixture has a vapour pressure of 400 mm at 300 K when mixed in the molar ratio of $1: 1$ and a vapour pressure of 350 mm when mixed in the molar ratio of 1:2 at the same temperature. The vapour pressures of the two pure liquids X and Y respectively are
a) $250 \mathrm{~mm}, 550 \mathrm{~mm}$
b) $350 \mathrm{~mm}, 450 \mathrm{~mm}$
c) $350 \mathrm{~mm}, 700 \mathrm{~mm}$
d) $550 \mathrm{~mm}, 250 \mathrm{~mm}$
4. The van't Hoff factor(i) for a dilute aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is :
a) $1+\alpha$
b) $1-\alpha$
c) $1+2 \alpha$
d) $1-2 \alpha$
5. $\quad p_{A}$ and p_{B} are the vapour pressure of pure liquid components A and B respectively of an ideal binary solution. If $x A$ represents the mole fraction of component A, the total pressure of the solution will be :
a) $p_{B}+x_{A}\left(p_{B}-p_{A}\right)$
b) $p_{B}+x_{A}\left(p_{A}-p_{B}\right)$
c) $p_{A}+x_{A}\left(p_{B}-p_{A}\right)$
d) $p_{A}+x_{A}\left(p_{A}-p_{B}\right)$
6. Formation of a solution from two components can be considered as
(1) pure solvent \rightarrow separated solvent molecules, ΔH_{1}
(2) pure solute \rightarrow separated solvent molecules, $\Delta \mathrm{H}_{2}$
(3) separated solvent and solute molecules \rightarrow solution, ΔH_{3}

Solution so formed will be ideal if
a) $\Delta H_{\text {soln }}=\Delta H_{1}-\Delta H_{2}-\Delta H_{3}$
b) $\Delta H_{\text {soln }}=\Delta H_{3}-\Delta H_{1}-\Delta H_{2}$
c) $\Delta H_{\text {soln }}=\Delta H_{1}+\Delta H_{2}+\Delta H_{3}$
d) $\Delta H_{\text {soln }}=\Delta H_{1}+\Delta H_{2}-\Delta H_{3}$
7. Azeotropic mixture of HCl and water has
a) $48 \% \mathrm{HCl}$
b) $22.2 \% \mathrm{HCl}$
c) $36 \% \mathrm{HCl}$
d) $20.2 \% \mathrm{HCl}$
8. What is the molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution that has a density $1.84 \mathrm{~g} / \mathrm{cc}$ at $35^{\circ} \mathrm{C}$ and contains 98% solute by weight?
a) 4.18 M
b) 1.84 M
c) 8.41 M
d) 18.4 M
9. The osmotic pressure of 0.2 molar solution of urea at $27^{\circ} \mathrm{C}\left(\mathrm{R}=0.082{\left.\mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \text { is }}^{\text {a }}\right.$
a) 4.92 atm
b) 1 atm
c) 0.2 atm
d) 27 atm
10. In which ratio of volume 0.4 M HCl and 0.9 M HCl are to be mixed such that the concentration of the resultant solution becomes 0.7 M ?
a) $4: 9$
b) $2: 3$
c) $3: 2$
d) $1: 1$
11. The empirical formula of a nonelectrolyte is $\mathrm{CH}_{2} \mathrm{O}$. A solution containing 3 g of the compound exerts the same osmotic pressure as that of 0.05 M glucose solution. The molecular formula of the compound is
a) $\mathrm{CH}_{2} \mathrm{O}$
b) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
c) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$
d) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
12. Which of the following can be measured by the Ostwald-Walker dynamic method?
a) Relative lowering of vapour pressure
b) Lowering of vapour pressure
c) Vapour pressure of the solvent
d) All of the above
13. On shaking 10 mL of 0.1 molar solution of an organic compound in water with 10 mL of CCl_{4} til equilibrium is attained, concentration of the organic compound in water would be $(K=9)$ in molar units :
a) 0.01
b) 0.09
c) 0.001
d) 0.009
14. A solution containing 1.8 g of a compound (empirical formula $\mathrm{CH}_{2} \mathrm{O}$) in 40 g of water is observed to freeze at $-0.465^{\circ} \mathrm{C}$. The molecular formula of the compound is (K_{f} of water $=1.86 \mathrm{~kg} \mathrm{~K} \mathrm{~mol}^{-1}$)
a) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
b) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
c) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$
d) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
15. For dilute solution Raoult's law states that
a) The relative lowering of vapour pressure is equal to mole fraction of solute
b) The lowering of vapour pressure is equal to the mole fraction of solute
c) The vapour pressure of the solution is equal to mole fraction of the solvent
d) The relative lowering of vapour pressure is proportional to amount of solute in solution
16. For an ideal binary liquid solution with $P_{A}^{0}>P_{B}^{0}$ which relation between X_{A} (mole fraction of A in liquid phase) and Y_{A} (mole fraction of A in vapour phase) is correct, X_{B} and Y_{B} are mole fraction of B in liquid and vapour phase respectively :
a) $X_{A}=Y_{A}$
b) $X_{A}>Y_{A}$
c) $\frac{X_{A}}{X_{B}}<\frac{Y_{A}}{Y_{B}}$
d) X_{A}, Y_{A}, X_{B} and Y_{B} cannot be corelated
17. The normality of $2.3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is
a) 4.6 N
b) 5.6 N
c) 6.6 N
d) 7.6 N
18. The molecular weight of NaCl determined by studying freezing point depression of its 0.5% aqueous solution is 30 . The apparent degree of dissociation of NaCl is
a) 0.60
b) 0.50
c) 0.30
d) 0.95
19. A 5 molar solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is diluted from 1 L to 10 L . What is the normality of the solution?
a) 0.25 N
b) 1 N
c) 2 N
d) 7 N
20. 100 mL of water and 50 mL ether mixture is shaken with succinic acid. At equilibrium ether layer contains 0.127 g and water layer contains 1.843 g of succinic acid. The partition coefficient of succinic acid in favour of water is :
a) 7.26
b) 10
c) 2
d) 4.5

